Seddati, O., Hubens, N., Dupont, S., & Dutoit, T. (2023). A Recipe for Efficient SBIR Models: Combining Relative Triplet Loss with Batch Normalization and Knowledge Distillation. ORBi UMONS-University of Mons. https://orbi.umons.ac.be/handle/20.500.12907/48304. |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (November 2022). FasterAI: A Lightweight Library for Neural Networks Compression. Electronics, 11 (22), 3789. doi:10.3390/electronics11223789 Peer Reviewed verified by ORBi |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (2022). One-Cycle Pruning: Pruning Convnets With Tight Training Budget. 2022 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip46576.2022.9897980 Peer reviewed |
Delvigne, V., Tits, N., La Fisca, L., Hubens, N., Maiorca, A., Wannous, H., Dutoit, T., & Vandeborre, J.-P. (March 2022). Where Is My Mind (Looking at)? A Study of the EEG–Visual Attention Relationship. Informatics, 9 (1), 26. doi:10.3390/informatics9010026 Peer Reviewed verified by ORBi |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (2022). Improve Convolutional Neural Network Pruning by Maximizing Filter Variety. In S. Sclaroff (Ed.), Image Analysis and Processing – ICIAP 2022 - 21st International Conference, 2022, Proceedings. Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-031-06427-2_32 Peer reviewed |
Maiorca, A., Hubens, N., Laraba, S., & Dutoit, T. (2022). Towards Lightweight Neural Animation : Exploration of Neural Network Pruning in Mixture of Experts-based Animation Models. Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP). doi:10.5220/0010908700003124 Peer reviewed |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (25 November 2021). Introduction to Compression Techniques for Lighter Neural Networks [Paper presentation]. Workshop Energy4Climate, Paris, France. Peer reviewed |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (2021). Fake-Buster: A Lightweight Solution for Deepfake Detection. Proceedings of SPIE: The International Society for Optical Engineering. doi:10.1117/12.2596317 Peer reviewed |
Hubens, N., Mancas, M., Gosselin, B., Preda, M., & Zaharia, T. (2021). One-Cycle Pruning: Pruning ConvNets Under a Tight Training Budget [Paper presentation]. Sparsity in Neural Networks: Advancing Understanding and Practice, Remote, NULL. |
Hubens, N., Mancas, M., Gosselin, B., Decombas, M., Preda, M., Zaharia, T., & Dutoit, T. (2020). An Experimental Study of the Impact of Pre-Training on the Pruning of a Convolutional Neural Network [Paper presentation]. APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain. |
Delbrouck, J.-B., Maiorca, A., Hubens, N., & Dupont, S. (2019). Modulated Self-attention Convolutional Network for VQA. In NeurIPS 2019 Workshop on Visually-Grounded Interaction and Language (ViGIL) (2019). -. Peer reviewed |
Hubens, N. (20 September 2019). Towards smaller and faster DNNs [Paper presentation]. Machine Learning Workshop, Paris, France. |