Profil

Goedgebeur Jan


Main Referenced Co-authors
Chudnovsky, Maria (2)
Mácajová, Edita (2)
Schaudt, Oliver (2)
Van Cleemput, Nico (2)
Zamfirescu, Carol (2)
Main Referenced Keywords
General Earth and Planetary Sciences (1); General Environmental Science (1);
Main Referenced Unit & Research Centers
CREMMI - Modélisation mathématique et informatique (14)
Main Referenced Disciplines
Mathematics (14)

Publications (total 14)

The most downloaded
3 downloads
Goedgebeur, J., Mácajová, E., & Škoviera, M. (06 January 2019). Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44. Ars Mathematica Contemporanea, 16 (2), 277-298. doi:10.26493/1855-3974.1601.e75 https://hdl.handle.net/20.500.12907/27742
The most cited
29 citations (Scopus®)
Vandersickel, N., Van Nieuwenhuyse, E., Van Cleemput, N., Goedgebeur, J., El Haddad, M., De Neve, J., Demolder, A., Strisciuglio, T., Duytschaever, M., & Alexander, P. (10 September 2019). Directed Networks as a Novel Way to Describe and Analyze Cardiac Excitation: Directed Graph Mapping. Frontiers in Physiology, 10, 14. doi:10.3389/fphys.2019.01138 https://hdl.handle.net/20.500.12907/2849

Goedgebeur, J., Mácajová, E., & Škoviera, M. (20 March 2020). The smallest nontrivial snarks of oddness 4. Discrete Applied Mathematics, 277, 139-162. doi:10.1016/j.dam.2019.09.020
Peer Reviewed verified by ORBi

Chudnovsky, M., Goedgebeur, J., Schaudt, O., & Mingxian, Z. (24 February 2020). Obstructions for three-coloring and list three-coloring H-free graphs. SIAM Journal on Discrete Mathematics, 34 (1), 431-469. doi:10.1137/18M1210290
Peer Reviewed verified by ORBi

Fowler, P., Gauci, J. B., Goedgebeur, J., Pisanski, T., & Sciriha, I. (01 February 2020). Existence of regular nut graphs for degree at most 11. Discussiones Mathematicae Graph Theory, 40 (2), 533-557. doi:10.7151/dmgt.2283
Peer reviewed

Goedgebeur, J., Meersman, B., & Zamfirescu, C. (15 January 2020). Graphs with few Hamiltonian Cycles. Mathematics of Computation, 89, 965-991. doi:10.1090/mcom/3465
Peer Reviewed verified by ORBi

Chudnovsky, M., Goedgebeur, J., Schaudt, O., & Zhong, M. (12 January 2020). Obstructions for three-coloring graphs without induced paths on six vertices. Journal of Combinatorial Theory. Series B, 140, 45-83. doi:10.1016/j.jctb.2019.04.006
Peer Reviewed verified by ORBi

Goedgebeur, J. (06 January 2020). On minimal triangle-free 6-chromatic graphs. Journal of Graph Theory, 93 (1), 34-48. doi:10.1002/jgt.22467
Peer Reviewed verified by ORBi

Goedgebeur, J. (13 November 2019). Generation algorithms for solving mathematical and chemical problems (invited speaker). Paper presented at 21st French Graph Theory Conference (JGA 2019), Brussels, Belgium.

Abreu, M., Goedgebeur, J., Labbate, D., & Mazzuoccolo, G. (30 October 2019). Colourings of cubic graphs inducing isomorphic monochromatic subgraphs. Journal of Graph Theory, 92 (4), 415-444. doi:10.1002/jgt.22462
Peer Reviewed verified by ORBi

Vandersickel, N., Van Nieuwenhuyse, E., Van Cleemput, N., Goedgebeur, J., El Haddad, M., De Neve, J., Demolder, A., Strisciuglio, T., Duytschaever, M., & Alexander, P. (10 September 2019). Directed Networks as a Novel Way to Describe and Analyze Cardiac Excitation: Directed Graph Mapping. Frontiers in Physiology, 10, 14. doi:10.3389/fphys.2019.01138
Peer reviewed

Goedgebeur, J., & Zamfirescu, C. (30 July 2019). On almost hypohamiltonian graphs. Discrete Mathematics and Theoretical Computer Science, 21 (4), 18.
Peer Reviewed verified by ORBi

Goedgebeur, J., Ozeki, K., Van Cleemput, N., & Wiener, G. (03 July 2019). On the minimum leaf number of cubic graphs. Discrete Mathematics, 342 (11), 3000-3005. doi:10.1016/j.disc.2019.06.005
Peer Reviewed verified by ORBi

Goedgebeur, J. (25 June 2019). Graphs with few hamiltonian cycles. Paper presented at 9th Slovenian International Conference on Graph Theory, Bled, Slovenia.

Exoo, G., & Goedgebeur, J. (11 March 2019). Bounds for the smallest k-chromatic graphs of given girth. Discrete Mathematics and Theoretical Computer Science, 21 (3), 16.
Peer Reviewed verified by ORBi

Goedgebeur, J., Mácajová, E., & Škoviera, M. (06 January 2019). Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44. Ars Mathematica Contemporanea, 16 (2), 277-298. doi:10.26493/1855-3974.1601.e75
Peer reviewed

Contact ORBi UMONS