[6] Holly, F.W., Cope, A.C., Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J Am Chem Soc 66:11 (1944), 1875–1879.
[7] Ning, X., Ishida, H., Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A Polym Chem 32:6 (1994), 1121–1129.
[8] Ishida, H., Process for preparation of benzoxazine compounds in solventless systems. 5, Aug. 6, 1996, 516–543.
[13] Ghosh, N.N., Kiskan, B., Yagci, Y., Polybenzoxazines - new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:11 (2007), 1344–1391.
[14] Nash, N.H., Young, T.M., Stanley, W.F., The influence of a thermoplastic toughening interlayer and hydrothermal conditioning on the Mode-II interlaminar fracture toughness of Carbon/Benzoxazine composites. Compos Part A Appl Sci Manuf 81 (2016), 111–120.
[15] Shen, S.B., Ishida, H., Development and characterization of high-performance polybenzoxazine composites. Polym Compos 17:5 (1996), 710–719.
[16] Jang, J., Yang, H., The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J Mater Sci 35:9 (2000), 2297–2303.
[18] Kumar, K.S.S., Nair, C.P.R., Ninan, K.N., Effect of fiber length and composition on mechanical properties of carbon fiber-reinforced polybenzoxazine. Polym Adv Technol 19:7 (2008), 895–904.
[19] Rimdusit, S., Jongvisuttisun, P., Jubsilp, C., Tanthapanichakoon, W., Highly processable ternary systems based on benzoxazine, epoxy, and phenolic resins for carbon fiber composite processing. J Appl Polym Sci 111:3 (2009), 1225–1234.
[20] Ma, X.Q., Gu, Y.Z., Li, M., Li, Y.X., Zhang, D.M., Jia, L.J., et al. Properties of carbon fiber composite laminates fabricated by coresin film infusion process for different prepreg materials. Polym Compos 34:12 (2013), 2008–2018.
[21] Jubsilp, C., Panyawanitchakun, C., Rimdusit, S., Flammability and thermomechanical properties of dianhydride-modified polybenzoxazine composites reinforced with carbon fiber. Polym Compos 34:12 (2013), 2067–2075.
[22] Nash, N.H., Ray, D., Young, T.M., Stanley, W.F., The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer. Compos Part A Appl Sci Manuf 76 (2015), 135–144.
[23] Ishida, H., Low, H.Y., Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites. J Appl Polym Sci 69:13 (1998), 2559–2567.
[24] Xiang, H., Ling, H., Wang, J., Song, L., Gu, Y., A novel high performance RTM resin based on benzoxazine. Polym Compos 26:5 (2005), 563–571.
[25] Kimura, H., Matsumoto, A., Ohtsuka, K., Glass fiber-reinforced composite based on benzoxazine resin. J Appl Polym Sci 114:2 (2009), 1256–1263.
[26] Xu, M., Hu, J., Zou, X., Liu, M., Dong, S., zou, Y., et al. Mechanical and thermal enhancements of benzoxazine-based GF composite laminated by in situ reaction with carboxyl functionalized CNTs. J Appl Polym Sci 129:5 (2013), 2629–2637.
[27] Xu, M., Yang, X., Zhao, R., Liu, X., Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates. J Appl Polym Sci 128:2 (2013), 1176–1184.
[29] Yan, H., Wang, H., Fang, Z., Flame-retarding modification for ramie/benzoxazine laminates and the mechanism study. Industrial Eng Chem Res 53:51 (2014), 19961–19969.
[30] Thirukumaran, P., Sathiyamoorthi, R., Shakila Parveen, A., Sarojadevi, M., New benzoxazines from renewable resources for green composite applications. Polym Compos 37:2 (2016), 573–582.
[31] Thirukumaran, P., Shakila Parveen, A., Kumudha, K., Sarojadevi, M., Synthesis and characterization of new polybenzoxazines from renewable resources for bio-composite applications. Polym Compos 31 (2014), 1821–1829.
[32] Thirukumaran, P., Shakila Parveen, A., Sarojadevi, M., Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:12 (2014), 2790–2801.
[33] Rimdusit, S., Tanthapanichakoon, W., Jubsilp, C., High performance wood composites from highly filled polybenzoxazine. J Appl Polym Sci 99:3 (2006), 1240–1253.
[34] Kasemsiri, P., Hiziroglu, S., Rimdusit, S., Properties of wood polymer composites from eastern redcedar particles reinforced with benzoxazine resin/cashew nut shell liquid copolymer. Compos Part A Appl Sci Manuf 42:10 (2011), 1454–1462.
[35] Coleman, J.N., Khan, U., Gun'ko, Y.K., Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:6 (2006), 689–706.
[37] Xu, P., Cong, P., Gao, Z., Du, M., Wang, Z., Su, X., et al. High performance graphene oxide-modified polybenzoxazine resin. Polym Compos 37:5 (2016), 1507–1514.
[38] Li, C., Kang, N.-J., Labrandero, S.D., Wan, J., González, C., Wang, D.-Y., Synergistic effect of carbon nanotube and polyethersulfone on flame retardancy of carbon fiber reinforced epoxy composites. Industrial Eng Chem Res 53:3 (2014), 1040–1047.
[39] Dumas, L., Bonnaud, L., Dubois, P., Polybenzoxazine nanocomposites: case study of carbon nanotubes. Froimowicz, P., Ishida, H., (eds.) Advanced and emerging polybenzoxazine science and Technology, 2016, Elsevier, Amsterdam.
[40] Dumas, L., Bonnaud, L., Olivier, M., Poorteman, M., Dubois, P., Facile preparation of a novel high performance benzoxazine-CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties. Chem Commun 49:83 (2013), 9543–9545.
[41] Dumas, L., Bonnaud, L., Olivier, M., Poorteman, M., Dubois, P., High performance Benzoxazine/CNT nanohybrid network – an easy and scalable way to combine attractive properties. Eur Polym J 58 (2014), 218–225.
[42] Kosmidou, T.V., Vatalis, A.S., Delides, C.G., Logakis, E., Pissis, P., Papanicolaou, G.C., Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanocomposites. eXPRESS Polym Lett 2:5 (2008), 364–372.
[43] Ran, Q.-c., Tian, Q., Li, C., Gu, Y., Investigation of processing, thermal, and mechanical properties of a new composite matrix-benzoxazine containing aldehyde group. Polym Adv Technol 21:3 (2010), 170–176.
[44] Coleman, J.N., Khan, U., Blau, W.J., Gun'ko, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:9 (2006), 1624–1652.
[45] Spontón, M., Ronda, J.C., Galià, M., Cádiz, V., Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94:1 (2009), 102–106.
[46] Huo, S., Wang, J., Yang, S., Zhang, B., Tang, Y., A phosphorus-containing phenolic derivative and its application in benzoxazine resins: curing behavior, thermal, and flammability properties. [n/a-n/a] J Appl Polym Sci, 133(19), 2016.
[47] Bonnaud, L., Murariu, O., Dumas, L., Raimondo, M., Chirico, S., Guadagno, L., et al. In Fire properties of TGMDA resins for aeronautic applications, in 3rd EASN. Milan, Italy, 2013.
[48] Bonnaud, L, Dumas, L, Murariu, O, Raimondo, M, Chirico, S, Guadagno, L, Longo, P, Mariconda, A, Dubois, P. Effect of multiwall carbon nanotubes and their combination with silicone and phosphorous compounds to enhance epoxy electrical, thermal and fire properties. In: Proceedings of Engineering Against Failure, ICEAF IV, 2015; pp 1–7.
[49] Xiao, G.Z., Shanahan, M.E.R., Water absorption and desorption in an epoxy resin with degradation. J Polym Sci Part B Polym Phys 35:16 (1997), 2659–2670.
[50] De'Nève, B., Shanahan, M.E.R., Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra. Polymer 34:24 (1993), 5099–5105.