Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
My Espace Recherche
Projects Module
PhD Module
Statistics
Help
Table of Content
Add a new publication
Legal information
About
What's ORBi
Release notes
OAI-PMH
Impact and Visibility
Deposit Charter
News
Explore
PeriScops
Back
Home
Detailed Reference
Request a copy
Article (Scientific journals)
Recurrence properties of hypercyclic operators
Bès, Juan
;
Menet, Quentin
;
Peris, Alfredo
et al.
2016
•
In
Mathematische Annalen, 366
, p. 545-572
Peer Reviewed verified by ORBi
Permalink
https://hdl.handle.net/20.500.12907/1323
DOI
10.1007/s00208-015-1336-3
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
2016_Recurrence properties of hypercyclic operators.pdf
Publisher postprint (563.56 kB)
Request a copy
All documents in ORBi UMONS are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Disciplines :
Mathematics
Author, co-author :
Bès, Juan
Menet, Quentin
;
Université de Mons - UMONS > Faculté des Sciences > Service de Probabilité et statistique
Peris, Alfredo
Puig, Yunied
Language :
English
Title :
Recurrence properties of hypercyclic operators
Publication date :
01 October 2016
Journal title :
Mathematische Annalen
ISSN :
0025-5831
eISSN :
1432-1807
Publisher :
Springer, Germany
Volume :
366
Pages :
545-572
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S844 - Probabilité et statistique
Research institute :
R150 - Institut de Recherche sur les Systèmes Complexes
Available on ORBi UMONS :
since 08 January 2017
Statistics
Number of views
4 (0 by UMONS)
Number of downloads
0 (0 by UMONS)
More statistics
Scopus citations
®
50
Scopus citations
®
without self-citations
33
OpenCitations
38
OpenAlex citations
71
Bibliography
Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)
Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006)
Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 94, 181–210 (2007)
Bayart, F., Matheron, É.: Dynamics of linear operators, Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge (2009)
Bayart, F., Matheron, É.: (Non-)weakly mixing operators and hypercyclicity sets. Ann. Inst. Fourier 59, 1–35 (2009)
Bayart, F., Ruzsa, I.: Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Syst. 35, 691–709 (2015)
Bergelson, V.: Ergodic Ramsey Theory- an update, Ergodic Theory of Zd -actions. Lond. Math. Soc. Lecture Note Ser. 28, 1–61 (1996)
Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. Studia Math. 157, 17–32 (2003)
Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)
Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Syst. 27, 383–404 (2007)
Bonilla, A., Grosse-Erdmann, K.-G.: Erratum: Ergodic Theory Dynam. Systems 29, 1993–1994 (2009)
Chan, K., Seceleanu, I.: Hypercyclicity of shifts as a zero-one law of orbital limit points. J. Oper. Theory 67, 257–277 (2012)
Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. Proc. Amer. Math. Soc. 132, 385–389 (2004)
Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton (1981)
Giuliano, R., Grekos, G., Mišík, L.: Open problems on densities II, Diophantine Analysis and Related Fields 2010. AIP Conf. Proc. 1264, 114–128 (2010)
Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139, 47–68 (2000)
Grosse-Erdmann, K.-G., Peris, A.: Frequently dense orbits. C. R. Math. Acad. Sci. Paris 341, 123–128 (2005)
Grosse-Erdmann, K.G., Peris, A.: Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 104, 413–426 (2010)
Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos, Universitext. Springer, London (2011)
Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Amer. Math. Soc. arXiv:1410.7173
Puig, Y.: Linear dynamics and recurrence properties defined via essential idempotents of βN (2014) arXiv:1411.7729 (preprint)
Salas, H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995)
Salat, T., Toma, V.: A classical Olivier’s theorem and statistical convergence. Ann. Math. Blaise Pascal 10, 305–313 (2003)
Shkarin, S.: On the spectrum of frequently hypercyclic operators. Proc. Am. Math. Soc. 137, 123–134 (2009)
Similar publications
Contact ORBi UMONS