[en] The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8 mmol kg! 1 SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from !0.1 to 0.4 mmol kg!1 SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The con- stituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3 kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with sea- water of about 2.3 mmol kg! 1 SW compared to unfed ones who showed a difference of about 0.5 mmol kg! 1 SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH 7.7 to about twice that of the control individuals and, for those at pH 7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH 7.7 but not for those at pH 7.4.
Appelhans Y.S., Thomsen J., Pansch C., Melzner F., Wahl M. Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser. 2012, 459:85-97.
Bialaszewicz K. Contribution à l'étude de la composition minérale des liquides nourriciers chez les animaux marins. Arch. Int. Physiol. 1933, 36:41-53.
Binyon J. Physiology of Echinodermata 1972, Pergamon Press, Oxford.
Bookbinder L.H., Shick J.M. Anaerobic and aerobic energy metabolism in ovaries of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 1986, 93:103-110.
Boolootian R.A., Lasker R. Digestion of brown algae and the distribution of nutrients in the purple sea urchin Strongylocentrotus purpuratus. Comp. Biochem. Physiol. 1964, 11:273-289.
Burnett L., Terwilliger N., Carroll A., Jorgensen D., Scholnick D. Respiratory and acid-base physiology of the purple sea urchin, Strongylocentrotus purpuratus, during air exposure: presence and function of a facultative lung. Biol. Bull. 2002, 203:42-50.
Caldeira K., Wickett M. Anthropogenic carbon and ocean pH. Nature 2003, 425:365.
Caldeira K., Wickett M. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 2005, 110:C09S04.
Catarino A.I., Bauwens M., Dubois Ph. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 2012, 19:2344-2353.
Cole W. The composition of fluids and sera of some marine animals and of the seawater in which they live. J. Gen. Physiol. 1940, 23:575-584.
Collip J.B. The alkali reserve of marine fish and invertebrates. J. Biol. Chem. 1920, 44:329-344.
David B., Chone T., Mooi R., De Ridder C. Antarctic Echinoidea. Synopses of the Antarctic Benthos 2005, vol. 10. A.R.G. Gantner Verlag KG, Ruggell/Lichstenstein. J.W. Wägele, J. Sieg (Eds.).
De Ridder C. Could the Stewart's organs of cidaroid echinoids be internal gills?. Proceedings of the sixth international echinoderm conference 1988, 675-681. A.A. Balkema, Rotterdam. R.D. Burke, P.V. Mladenov, P. Lambert, R.L. Parsley (Eds.).
Delaunay H. Sur l'excrétion azotée des Astéries (Asterias rubens Lin.). C. R. Soc. Biol. 1926, 94:1289-1290.
DelValls T.A., Dickson A.G. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ('tris') in synthetic seawater. Deep-Sea Res. I 1998, 45:1541-1554.
Donnellon J.A. An experimental study of clot formation in the perivisceral fluid of Arbacia. Physiol. Zool. 1938, 10:239-397.
Dupont S., Thorndyke M. Relationship between CO2-driven changes in extracellular acid-base balance and cellular immune response in two polar echinoderm species. JEMBE 2012, 424-425:32-37.
Dupont S., Ortega-Martinez O., Thorndyke M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 2010, 19:449-462.
Ellington W.R. Intermediary metabolism. Echinoderm Nutrition 1982, 395-416. A. A. Balkema, Rotterdam. M. Jangoux, J.M. Lawrence (Eds.).
Endean R. The coelomocytes and coelomic fluids. Physiology of Echinodermata 1966, 301-328. Interscience Publishers, New York. R.A. Boolootian (Ed.).
Farmanfarmaian A. The respiratory physiology of Echinoderms. Physiology of Echinodermata 1966, 245-266. Interscience Publishers, New York. R.A. Boolootian (Ed.).
Feely R.A., Sabine C.L., Hernandez-Ayon M.J., Ianson D., Hales B. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science 2008, 320:1490-1492.
Ferguson F. Nutrient transport in starfish. I. Properties of the coelomic fluid. Biol. Bull. 1964, 126:33-53.
Gellhorn E. Vergleichend-physiologische Untersuchungen uber die Pufferungspotenz von Blut und Korpersaften-I. Mitteilung. Pflugers Arch. 1926, 216:253-266.
Gran G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77:661-671.
Gutowska M.A., Melzner F., Langenbuch M., Bock C., Claireaux G., Pörtner H.O. Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J. Comp. Physiol. B 2010, 180:323-335.
Hall-Spencer J.M., Rodolof-Metalpa R., Martin S., Ransome E., Fine M., Turner S., Rowley S., Tedesco D., Buia M.C. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 2008, 454:96-99.
Heisler N. Buffering and transmembrane ion transfer processes. Acid-base regulation in animal 1986, 3-47. Elsevier Science, Amsterdam. N. Heisler (Ed.).
Heisler N. Interactions between gas exchange, metabolism, and ion transport in animals: an overview. Can. J. Zool. 1989, 67:2923-2935.
Holland N.D., Phillips J.H., Giese A.C. An autoradiographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull. 1965, 128:259-270.
Holland L.Z., Giese A.C., Phillips J.H. Studies on the perivisceral coelomic fluid protein concentration during seasonal and nutritional changes in the purple sea urchin. Comp. Biochem. Physiol. 1967, 21:361-371.
Hyman L.H. The invertebrates. Volume IV: Echinodermata, the coelomate bilateria 1955, Mc Graw-Hill Book Company Inc, New York.
IPCC Climage Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007, Cambridge University Press, Cambridge.
Koller G., Meyer H. Versuche über die Atmung der Echinodermen. Biol. Zentralbl. 1933, 53. (Heft 11/12).
Marchant H.K., Calosi P., Spicer J.I. Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J. Mar. Biol. Assoc. U. K. 2010, 90:1379-1384.
Matranga V., Bonaventura R., Di Bella G. Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell. Mol. Biol. 2002, 48:345-349.
Melzner F., Gutowska M.A., Langenbuch M., Dupont S., Lucassen M., Thorndyke M.C., Bleich M., Pörtner H.-O. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences 2009, 6:2313-2331.
Meyer H. Die atmung von Asterias rubens und ihre Abhängigkeit von verschiedenen Außfaktoren 1935, (Dissertation der Philosophischen Fakultät der Christian-Albrechts-Universität zu Kiel).
Miles H., Widdicombe S., Spicer J.I., Hall-Spencer J. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 2007, 54:89-96.
Moulin L., Catarino A.I., Claessens T., Dubois Ph. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar. Pollut. Bull. 2011, 62:48-54.
Nichols D. The histology of the tube-feet and clavulae of Echinocardium cordatum. Q. J. Microsc. Sci. 1959, s:-100:73-87.
Orr J.C. Recent and future changes in ocean carbonate chemistry. Ocean acidification 2011, 41-66. Oxford University Press, Oxford. J.-P. Gattuso, L. Hansson (Eds.).
Pörtner H.-O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser. 2008, 373:203-217.
Pörtner H.-O., Reipschläger A., Heisler N. Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J. Exp. Biol. 1998, 201:43-55.
Pörtner H.-O., Bock C., Reipschläger Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J. Exp. Biol. 2000, 203:2417-2428.
Prouho H. Recherches sur le Dorocidaris papillata et quelques autres échinides de la Méditerranée. Arch. Zool. Expér. Gén. 1888, 55:213-288.
Ruppert E.E., Fox R.S., Barnes R.D. Invertebrate zoology 2004, Brooks/Cole, CA, USA. Seventh edition.
Sarch M.N. Die Pufferung Der Korperflussigkeiten Bei Echinodermen. J. Comp. Physiol. A 1931, 14:525-545.
Sewell M.A., Hofmann G.E. Antarctic echinoids and climate change: a major impact on the brooding forms. Glob. Change Biol. 2011, 17:734-744.
Shick J.M. Respiratory gas exchange in echinoderms. Echinoderms Studies 1983, 1:67-110. Balkema, Rotterdam. M. Jangoux, J.M. Lawrence (Eds.).
Smith A. The structure, function and evolution of tube-feet and ambulacral pores in irregular echinoids. Paleontology 1980, 23:39-83.
Spicer J.I., Taylor A.C., Hill A.D. Acid-base status in the sea urchins Psammechinus miliaris and Echinus esculentus (Echinodermata: Echinoidea) during emersion. Mar. Biol. 1988, 99:527-534.
Spicer J., Widdicombe S., Needham H., Berge J. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 2011, 407:19-25.
Stickle W.B., Diehl W.J. Effects of salinity on echinoderms. Echinoderm Studies 1987, vol. 2:235-285. A.A. Balkema, Rotterdam.
Stumpp M., Trübenbach K., Brennecke D., Hu M.Y., Melzner F. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat. Toxicol. 2012, 110-111:194-207.
Truchot J.P., Duhamel-Jouve A. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir. Physiol. 1980, 39:241-254.