Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. 10.1002/mabi.200400043
Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571. 10.1111/j.1541-4337.2010.00126.x
Madhavan NK, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. 10.1016/j.biortech.2010.05.092
Perego G, Cella GD (2010) Mechanical Properties. Poly(Lactic Acid). Wiley, New York, pp 141–153
Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. 10.1016/j.progpolymsci.2013.05.014
Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108. 10.1080/15583720701834216
Murariu M, Bonnaud L, Yoann P et al (2010) New trends in polylactide (PLA)-based materials: “Green” PLA–Calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95:374–381. 10.1016/j.polymdegradstab.2009.11.032
Abe H, Takahashi N, Kim KJ et al (2004) Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst. Biomacromol 5:1606–1614. 10.1021/bm0497872
Patwa R, Singh M, Kumar A, Katiyar V (2018) Kinetic modelling of thermal degradation and non-isothermal crystallization of silk nano-discs reinforced poly (lactic acid) bionanocomposites. Polym Bull 76:1349–1382. 10.1007/s00289-018-2434-7
Gu L, Qiu J, Qiu C et al (2018) Mechanical properties and degrading behaviors of aluminum hypophosphite-poly(Lactic Acid) (PLA) nanocomposites. Polym Plast Technol Eng 58(2):126–138. 10.1080/03602559.2018.1466169
Okamoto K, Toshima K, Matsumura S (2005) Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling. Macromol Biosci 5:813–820. 10.1002/mabi.200500086
Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev 14:233–248. 10.1016/j.rser.2009.07.005
Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. 10.1016/j.wasman.2009.06.004
Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129. 10.1016/j.pecs.2009.09.001
Cleetus C, Thomas S, Varghese S (2013) Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J Energy 2013:10. 10.1155/2013/608797
Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514. 10.3390/en6010514
Huang Z, Guo Y, Zhang T et al (2013) Fabrication and characterizations of zeolite β–filled polyethylene composite films. Packag Technol Sci 26:1–10. 10.1002/pts.1986
Feng C, Zhang Y, Liu S et al (2013) Synergistic effects of 4A zeolite on the flame retardant properties and thermal stability of a novel halogen-free PP/IFR composite. Polym Adv Technol 24:478–486. 10.1002/pat.3108
Kim H-S, Kim H-J (2008) Influence of the zeolite type on the mechanical–thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites. J Appl Polym Sci 110:3247–3255. 10.1002/app.28853
Fernández A, Soriano E, Hernández-Muñoz P, Gavara R (2010) Migration of antimicrobial silver from composites of polylactide with silver zeolites. J Food Sci 75:E186–E193. 10.1111/j.1750-3841.2010.01549.x
Kim H-S, Lee B-H, Kim H-J, Yang H-SS (2011) Mechanical-thermal properties and VOC emissions of natural-flour-filled biodegradable polymer hybrid bio-composites. J Polym Environ 19:628–636. 10.1007/s10924-011-0313-5
Jiraroj D, Tungasmita S, Tungasmita DN (2014) Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol 264:418–422. 10.1016/j.powtec.2014.05.049
Fonseca AM, Neves IC (2013) Study of silver species stabilized in different microporous zeolites. Microporous Mesoporous Mater 181:83–87. 10.1016/j.micromeso.2013.07.018
Audisio G, Bertini F, Beltrame PL, Carniti P (1992) Catalytic degradation of polyolefins. Makromol Chemie Macromol Symp 57:191–209. 10.1002/masy.19920570117
Neves IC, Botelho G, Machado AV, Rebelo P (2006) The effect of acidity behaviour of Y zeolites on the catalytic degradation of polyethylene. Eur Polym J 42:1541–1547. 10.1016/j.eurpolymj.2006.01.021
Coelho A, Costa L, Marques MM et al (2012) The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A Gen 413:183–191. 10.1016/j.apcata.2011.11.010
Durmuş A, Koç SN, Pozan GS et al (2005) Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Appl Catal B Environ 61:316–322. 10.1016/j.apcatb.2005.06.009
Gobin K, Manos G (2004) Thermogravimetric study of polymer catalytic degradation over microporous materials. Polym Degrad Stab 86:225–231. 10.1016/j.polymdegradstab.2004.05.001
Auras R, Selke S, Yuzay IE (2010) Poly(Lactic Acid) and zeolite composites and method of manufacturing the same, Patent US20100236969A1
Yuzay IE, Auras R, Selke S (2010) Poly(lactic acid) and zeolite composites prepared by melt processing: morphological and physical–mechanical properties. J Appl Polym Sci 115:2262–2270. 10.1002/app.31322
Yuzay IE, Auras R, Soto-Valdez H, Selke S (2010) Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polym Degrad Stab 95:1769–1777. 10.1016/j.polymdegradstab.2010.05.011
Ye Q, Huang Z, Hao Y et al (2016) Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. J Therm Anal Calorim 124:1471–1484. 10.1007/s10973-016-5314-0
Bendahou D, Bendahou A, Grohens Y, Kaddami H (2015) New nanocomposite design from zeolite and poly(lactic acid). Ind Crops Prod 72:107–118. 10.1016/j.indcrop.2014.12.055
Pires M, Murariu M, Cardoso MA et al (2013) Synthesis and characterization of novel zeolite poly(lactic acid) composites. In: Proceedings of the 12th Brazilian congress on polymers, Florianópolis, Brazil
Hao YH, Huang Z, Wang JW et al (2016) Improved thermal stability of poly (l-lactide) with the incorporation of zeolite ZSM-5. Polym Test 49:46–56. 10.1016/j.polymertesting.2015.11.010
Hao Y, Huang Z (2018) Effects of different zeolites on poly(L-Lactide) thermal degradation BT. In: Ouyang Y, Xu M, Zhao P et al (eds) Applied sciences in graphic communication and packaging. Springer, Singapore, pp 849–855
Gregorova A, Machovsky M, Wimmer R (2012) Viscoelastic properties of mineral-filled poly(lactic acid) composites. Int J Polym Sci 2012:1–6. 10.1155/2012/252981
Cardoso AM, Horn MB, Ferret LS et al (2015) Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J Hazard Mater 287:69. 10.1016/j.jhazmat.2015.01.042
Cardoso AM, Paprocki A, Ferret LS et al (2015) Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139:59–67. 10.1016/j.fuel.2014.08.016
Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift Zeitschrift für Polym 251:980–990. 10.1007/BF01498927
Murariu M, Doumbia A, Bonnaud L et al (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12:1762–1771. 10.1021/bm2001445
Kutchko BG, Kim AG (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544. 10.1016/j.fuel.2006.05.016
Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. J Braz Chem Soc 27:2034–2045. 10.5935/0103-5053.20160093
Melo CR, Riella HG, Kuhnen NC et al (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater Sci Eng B 177:345–349. 10.1016/j.mseb.2012.01.015
Okamoto M (2012) Polylactide/clay nano-biocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 77–118
Sinha Ray S, Okamoto M, Ray SS et al (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840. 10.1002/marc.200300008
Breck DW (1978) Zeolite molecular sieves. Wiley-Interscience, New York
Esposito S, Marocco A, Dell’Agli G et al (2015) Relationships between the water content of zeolites and their cation population. Microporous Mesoporous Mater 202:36–43. 10.1016/j.micromeso.2014.09.041
Lim L-TT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. 10.1016/j.progpolymsci.2008.05.004
Filippone G, Carroccio SC, Curcuruto G et al (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state e Part II: thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer (Guildf) 73:102–110
Filippone G, Carroccio SC, Mendichi R et al (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state—Part I: thermal and thermo-oxidative degradation of polyamide 11. Polymer (Guildf) 72:134–141. 10.1016/j.polymer.2015.06.059
Carrasco F, Pags P, Gámez-Pérez J et al (2010) Kinetics of the thermal decomposition of processed poly(lactic acid). Polym Degrad Stab 95:2508–2514. 10.1016/j.polymdegradstab.2010.07.039
Fan Y, Nishida H, Mori T et al (2004) Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l, l-lactide formation. Polymer (Guildf) 45:1197–1205. 10.1016/j.polymer.2003.12.058
Narayan R, Wu WM, Criddle CS et al (2013) Lactide production from thermal depolymerization of PLA with applications to production of PLA or other bioproducts. 1 United States Patent Application 20130023674
Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer (Guildf) 45:8239–8251. 10.1016/j.polymer.2004.09.057
Srinivasan G, Grewell D (2013) Depolymerization of polylactic acid, Patent US20130096342A1
Xu L, Crawford K, Gorman CB (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44:4777–4782. 10.1021/ma2000948
Nishida H (2010) Thermal Degradation. In: Auras R, Lim LT, Selke S, Tsuji H (eds) Poly(Lactic Acid). Wiley, New York, pp 401–412
Abe H, Takahashi N, Kim KJ, Mochizuki M (2004) Thermal degradation processes of end-capped poly(L-lactide) s in the presence and absence of residual zinc catalyst. Biomacromolecules 5:1606–1614
Kopinke FD, Remmler M, Mackenzie K et al (1996) Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polym Degrad Stab 53:329–342. 10.1016/0141-3910(96)00102-4
Wachsen O, Reichert KH, Krüger RP et al (1997) Thermal decomposition of biodegradable polyesters—III. Studies on the mechanisms of thermal degradation of oligo-L-lactide using SEC, LACCC and MALDI-TOF-MS. Polym Degrad Stab 55:225–231. 10.1016/S0141-3910(96)00127-9
Liu X, Zou Y, Li W et al (2006) Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91:3259–3265. 10.1016/j.polymdegradstab.2006.07.004
Ukei H, Hirose T, Horikawa S et al (2000) Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Today 62:67. 10.1016/S0920-5861(00)00409-0
Feng L, Feng S, Bian X et al (2018) Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polym Degrad Stab 157:212–223. 10.1016/j.polymdegradstab.2018.10.008
Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv, Rev
Zou H, Yi C, Wang L et al (2009) Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim 97:929–935. 10.1007/s10973-009-0121-5
Chen X, Zhuo J, Jiao C (2012) Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab 97:2143–2147. 10.1016/j.polymdegradstab.2012.08.016
Herrera-Kao WA, Loría-Bastarrachea MI, Pérez-Padilla Y et al (2018) Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polym Bull 75:4191–4205. 10.1007/s00289-017-2260-3
McNeill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates-1. Polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11:267–285. 10.1016/0141-3910(85)90050-3
He DL, Yin GF, Dong FQ et al (2010) Research on the additives to reduce radioactive pollutants in the building materials containing fly ash. J Hazard Mater 177:573–581. 10.1016/j.jhazmat.2009.12.071