Maffini, M.V., Rubin, B.S., Sonnenschein, C., Soto, A.M., Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol. Cell. Endocrinol. 254–255 (2006), 179–186.
Chen, M.-Y., Ike, M., Fujita, M., Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 17:1 (2002), 80–86.
O'Connor, J.C., Chapin, R.E., Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 75:11–12 (2003), 2099–2123.
Stemmelen, M., Pessel, F., Lapinte, V., Caillol, S., Habas, J.-P., Robin, J.-J., A fully biobased epoxy resin from vegetable oils: from the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci. Part A Polym. Chem., 49(11), 2011, 2434.
Patel, A., Maiorana, A., Yue, L., Gross, R.A., Manas-Zloczower, I., Curing kinetics of biobased epoxies for tailored applications. Macromolecules 49:15 (2016), 5315–5324.
Brocas, A.-L., Llevot, A., Mantzaridis, C., Cendejas, G., Auvergne, R., Caillol, S., Carlotti, S., Cramail, H., Epoxidized rosin acids as co-precursors for epoxy resins. Des. Monomers Polym. 17:4 (2014), 301–310.
Sultania, M., Rai, J.S.P., Srivastava, D., Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. J. Hazard. Mater. 185:2–3 (2011), 1198–1204.
Janvier, M., Hollande, L., Jaufurally, A.S., Pernes, M., Ménard, R., Grimaldi, M., Beaugrand, J., Balaguer, P., Ducrot, P.-H., Allais, F., Syringaresinol: a renewable and safer alternative to bisphenol a for epoxy-amine resins. ChemSusChem 10:4 (2017), 738–746.
Hernandez, E.D., Bassett, A.W., Sadler, J.M., La Scala, J.J., Stanzione, J.F., Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain. Chem. Eng. 4:8 (2016), 4328–4339.
Llevot, A., Grau, E., Carlotti, S., Grelier, S., Cramail, H., Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: towards original symmetrical bio-based (bis) aromatic monomers. J. Mol. Catal. B Enzym. 125 (2016), 34–41.
Maiorana, A., Reano, A.F., Centore, R., Grimaldi, M., Balaguer, P., Allais, F., Gross, R.A., Structure property relationships of biobased n-alkyl bisferulate epoxy resins. Green Chem. 18:18 (2016), 4961–4973.
Ménard, R., Caillol, S., Allais, F., Ferulic acid-based renewable esters and amides-containing epoxy thermosets from wheat bran and beetroot pulp: chemo-enzymatic synthesis and thermo-mechanical properties characterization. Ind. Crops Prod. 95 (2017), 83–95.
Maiorana, A., Yue, L., Manas-Zloczower, I., Gross, R., Structure–property relationships of a bio-based reactive diluent in a bio-based epoxy resin. J. Appl. Polym. Sci., 133, 2016, 43635.
Kadam, A., Pawar, M., Yemul, O., Thamke, V., Kodam, K., Biodegradable biobased epoxy resin from karanja oil. Polymer 72 (2015), 82–92.
Peng, S.X., Shrestha, S., Yoo, Y., Youngblood, J.P., Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals. Polymer 112 (2017), 359–368.
Singh, M., Kaushik, A., Ahuja, D., Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohydr. Polym. 150 (2016), 48–56.
Yu, H.-Y., Qin, Z.-Y., Yan, C.-F., Yao, J.-M., Green nanocomposites based on functionalized cellulose nanocrystals: a study on the relationship between interfacial interaction and property enhancement. ACS Sustain. Chem. Eng. 2:4 (2014), 875–886.
Raquez, J.-M., Murena, Y., Goffin, A.-L., Habibi, Y., Ruelle, B., DeBuyl, F., Dubois, P., Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos. Sci. Technol. 72:5 (2012), 544–549.
Maiorana, A., Spinella, S., Gross, R.A., Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties. Biomacromolecules 16:3 (2015), 1021–1031.
Singha, A.S., Rana, A.K., Effect of aminopropyltriethoxysilane (APS) treatment on properties of mercerized lignocellulosic grewia optiva fiber. J. Polym. Environ. 21:1 (2012), 141–150.
Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M.N., Gandini, A., Interaction of silane coupling agents with cellulose. Langmuir 18:8 (2002), 3203–3208.
Fernandes, S.C.M., Sadocco, P., Alonso-Varona, A., Palomares, T., Eceiza, A., Silvestre, A.J.D., Mondragon, I., Freire, C.S.R., Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces 5:8 (2013), 3290–3297.
Salon, M.-C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., Belgacem, M.N., Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem. 45:6 (2007), 473–483.
Mwaikambo, L.Y., Ansell, M.P., Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84:12 (2002), 2222–2234.
Pickering, K.L., Efendy, M.G.A., Le, T.M., A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 83 (2016), 98–112.
Saba, N., Safwan, A., Sanyang, M., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O., Sain, M., Thermal and Dynamic Mechanical Properties of Cellulose Nanofibers Reinforced Epoxy Composites, vol. 102, 2017.