Abstract :
[en] The nucleus has long been considered as a passive compartment containing the genetic information. However, recent attention to its structure, mechanical properties and physical connections with other cellular compartments has shown that the nucleus changes dynamically its morphology and internal organization for important cellular processes, especially those associated with cellular confinement. In this paper, we review some of the recent progresses in experimental investigations of nuclear squeezing that lead to a better understanding of the nuclear remodeling in response to various situations of cellular confinement. We will discuss compelling examples of original experiments performed with microsystems that have recently brought new insights into the close relationship between nuclear mechanics and cellular organization. We will show that the study of nuclear confinement with microsystems has opened up new experimental avenues that already offer promising clues for understanding diseases that are associated with defective nuclear mechanics.
Scopus citations®
without self-citations
21