van der Zee J. Heating the patient: a promising approach? Ann. Oncol. 2002;13:1173-84.
Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, et al. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019;387:299-324.
Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, et al. Enhancement of chemoradiation by co‐incorporation of gold nanoparticles and cisplatin into alginate hydrogel. JBiomedMaterResB. 2019.
Fathy MM, Mohamed FS, Elbialy N, Elshemey WM. Multifunctional Chitosan-Capped Gold Nanoparticles for enhanced cancer chemo-radiotherapy: An invitro study. Phys Med. 2018;48:76-83.
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, et al. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J.Control.Release. 2016;235:205-21.
Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011;2:1001-14.
Beik J, Shiran MB, Abed Z, Shiri I, Ghadimi‐Daresajini A, Farkhondeh F, et al. Gold nanoparticle‐induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor‐bearing mice. Med. Phys. 2018;45:4306-14.
Alamzadeh Z, Beik J, Mahabadi VP, Ardekani AA, Ghader A, Kamrava SK, et al. Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J Photochem PhotobiolB. 2019;192:19-25.
Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S, et al. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artif Cells Nanomed Biotechnol. 2017:1-13.
Zeinizade E, Tabei M, Shakeri-Zadeh A, Ghaznavi H, Attaran N, Komeili A, et al. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artif Cells Nanomed Biotechnol. 2018:1-13.
Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res. 2019;143:178-85
Qin Z, Bischof JC. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 2012;41:1191-217.
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10:831-47.
Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. The J. Phys. Chem.C. 2016;120:4691-716.
Beik J, Khademi S, Attaran N, Sarkar S, Shakeri-Zadeh A, Ghaznavi H, et al. A Nanotechnology-based Strategy to Increase the Efficiency of Cancer Diagnosis and Therapy: Folate-conjugated Gold Nanoparticles. Curr Med Chem. 2017;24:4399-416.
Pan L, Liu J, Shi J. Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy. ACSAppl. Mater.Interfaces. 2017;9:15952-61.
Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. JCancerResClinOncol. 2016;142:2217-29.
Eyvazzadeh N, Shakeri-Zadeh A, Fekrazad R, Amini E, Ghaznavi H, Kamrava SK. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci. 2017;32:1469-77.
Wiersma J, Van Wieringen N, Crezee H, Van Dijk J. Delineation of potential hot spots for hyperthermia treatment planning optimisation. Int. J. Hyperth. 2007;23:287-301.
Moros E. Physics of thermal therapy: fundamentals and clinical applications: CRC Press; 2012.
Dewhirst MW, Abraham J, Viglianti B. Evolution of thermal dosimetry for application of hyperthermia to treat cancer. Advances in Heat Transfer: Elsevier; 2015. p. 397-421.
Beik J, Asadi M, Khoei S, Laurent S, Abed Z, Mirrahimi M, et al. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J Photochem PhotobiolB. 2019:111599.
Topaloglu U, Yan Y, Novak P, Spring P, Suen J, Shafirstein G. Virtual thermal ablation in the head and neck using Comsol MultiPhysics. Proceedings of the COMSOL Conference2008. p. 1-7.
Cheong SK, Krishnan S, Cho SH. Modeling of plasmonic heating from individual gold nanoshells for near‐infrared laser‐induced thermal therapy. Med. Phys. 2009;36:4664-71.
Iizuka MN, Vitkin IA, Kolios MC, Sherar MD. The effects of dynamic optical properties during interstitial laser photocoagulation. PhysMedBiol. 2000;45:1335.
Ren Y, Qi H, Chen Q, Ruan L. Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int. J.Heat MassTransf. 2017;106:212-21.
Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. JAppl Physiol. 1948;1:93-122.
Wright NT. On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng. 2003;125:300-4.
Patel NV, Jethwa PR, Shetty A, Danish SF. Does the real-time thermal damage estimate allow for estimation of tumor control after MRI-guided laser-induced thermal therapy? Initial experience with recurrent intracranial ependymomas. J Neurosurg Pediatr. 2015;15:363-71.
Melo AR, Loureiro MMS, Loureiro F. Blood Perfusion Parameter Estimation in Tumors by means of a Genetic Algorithm. Procedia Comput Sci. 2017;108:1384-93.
Soni S, Tyagi H, Taylor RA, Kumar A. Experimental and numerical investigation of heat confinement during nanoparticle-assisted thermal therapy. IntCommunHeatMass. 2015;69:11-7.
Bhattacharjee S. DLS and zeta potential–What they are and what they are not? J.Control.Release. 2016;235:337-51.
Cheng G, Walker ARH. Synthesis and characterization of cobalt/gold bimetallic nanoparticles. J. Magn. Magn. Mater. 2007;311:31-5.
Mooney R, Schena E, Saccomandi P, Zhumkhawala A, Aboody K, Berlin JM. Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings. Int. J. Hyperth. 2017;33:150-9.
van der Zee J, Peer-Valstar JN, Rietveld PJ, de Graaf-Strukowska L, van Rhoon GC. Practical limitations of interstitial thermometry during deep hyperthermia. Int J Radiat Oncol Biol Phys. 1998;40:1205-12.
Van Rhoon GC, Wust P. Introduction: non-invasive thermometry for thermotherapy. Int. J. Hyperth. 2005;21:489-95.
Wiersma J, Van Dijk J. RF hyperthermia array modelling; validation by means of measured EM-field distributions. Int. J. Hyperth. 2001;17:63-81.
Wust P, Beck R, Berger J, Fähling H, Seebass M, Wlodarczyk W, et al. Electric field distributions in a phased-array applicator with 12 channels: Measurements and numerical simulations. Med. Phys. 2000;27:2565-79.
Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, et al. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008;37:1792-805.
LeBrun A, Ma R, Zhu L. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. J. Therm. Biol. 2016;62:129-37.
Feng Y, Rylander M, Bass J, Oden J, Diller K. Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. NSTI-Nanotech2005. p. 39-42.
Ekici O, Harrison R, Durr N, Eversole D, Lee M, Ben-Yakar A. Thermal analysis of gold nanorods heated with femtosecond laser pulses. JPhys:DApplPhys. 2008;41:185501.
Kannadorai RK, Liu Q. Optimization in interstitial plasmonic photothermal therapy for treatment planning. Med. Phys. 2013;40.
Von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. CancerRes. 2009;69:3892-900.
Soni S, Tyagi H, Taylor RA, Kumar A. The influence of tumour blood perfusion variability on thermal damage during nanoparticle-assisted thermal therapy. Int. J. Hyperth. 2015;31:615-25.
Singh R, Das K, Mishra SC, Okajima J, Maruyama S. Minimizing tissue surface overheating using convective cooling during laser-induced thermal therapy: A numerical study. JThermSciEngAppl. 2016;8:011002.