B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
J. P. Dakin, K. Hotate, R. A. Lieberman, and M. A. Marcus, “Optical fiber sensor,” in Handbook of Optoelectronics, J. P. Dakin and R. G. W. Brown, eds., 2nd ed. (CRC Press, 2017), pp. 1–84.
K. T. V. Grattan and Y. N. Ning, “Optical current sensor technology,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds., 1st ed. (Springer, 1998), pp. 183–223.
T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
Z. Li, Z. Yu, Y. Shen, X. Ruan, and Y. Dai, “Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor,” IEEE Access 7, 26641–26651 (2019).
Z. Li, J. Shen, Q. Ji, X. Ruan, Y. Zhang, Y. Dai, and Z. Cai, “Tuning the resonance of polarization-degenerate LP1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing,” J. Opt. Soc. Am. A 35(3), 397–405 (2018).
F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28(10), 14662 (2020).
S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, and E. Lewis, “Optical fibre pressure sensors in medical applications,” Sensors 15(7), 17115–17148 (2015).
O. V. Butov, A. P. Bazakutsa, Y. K. Chamorovskiy, A. N. Fedorov, and I. A. Shevtsov, “All-fiber highly sensitive Bragg grating bend sensor,” Sensors 19(19), 4228 (2019).
C. Christopher, A. Subrahmanyam, and V. V. R. Sai, “Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors,” Plasmonics 13(2), 493–502 (2018).
A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano, “Advanced fiber optical refractometers based on partially etched fiber Bragg gratings,” 1218–1221 (2004).
C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
T. Guo, “Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing,” J. Lightwave Technol. 35(16), 3323–3333 (2017).
M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
J. H. Qu, A. Dillen, W. Saeys, J. Lammertyn, and D. Spasic, “Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing,” Anal. Chim. Acta 1104, 10–27 (2020).
M. jie Yin, B. Gu, Q. F. An, C. Yang, Y. L. Guan, and K. T. Yong, “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev. 376, 348–392 (2018).
M. Loyez, E. M. Hassan, M. Lobry, F. Liu, and C. Caucheteur, “Rapid detection of circulating breast cancer cells using a multi-resonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5(2), 454–463 (2020).
M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19(11), 2595 (2019).
R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,” CA. Cancer J. Clin. 68(1), 7–30 (2018).
T. Doi, K. Shitara, Y. Naito, A. Shimomura, Y. Fujiwara, K. Yonemori, C. Shimizu, T. Shimoi, Y. Kuboki, N. Matsubara, A. Kitano, T. Jikoh, C. Lee, Y. Fujisaki, Y. Ogitani, A. Yver, and K. Tamura, “Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study,” Lancet Oncol. 18(11), 1512–1522 (2017).
K. Araki and Y. Miyoshi, “Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3 K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer,” Breast Cancer 25(4), 392–401 (2018).
V. Belli, N. Matrone, S. Napolitano, G. Migliardi, F. Cottino, A. Bertotti, L. Trusolino, E. Martinelli, F. Morgillo, D. Ciardiello, V. De Falco, E. F. Giunta, U. Bracale, F. Ciardiello, and T. Troiani, “Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models,” J. Exp. Clin. Cancer Res. 38(1), 236 (2019).
J. S. Ross, J. A. Fletcher, G. P. Linette, J. Stec, E. Clark, M. Ayers, W. F. Symmans, L. Pusztai, and K. J. Bloom, “The HER-2/ neu gene and protein in breast cancer 2003: biomarker and target of therapy,” Oncologist 8(4), 307–325 (2003).
D. L. Nielsen, M. Andersson, and C. Kamby, “HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors,” Cancer Treat. Rev. 35(2), 121–136 (2009).
C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296 (1996).
C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive index sensor based on microstructured fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005).
F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7(4), 23–29 (2017).
V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Actuators, A 308, 112016 (2020).
B. Spackova and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009).
C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
Y. Schevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
X. Chen, Y. Nan, X. Ma, H. Liu, W. Liu, L. Shi, and T. Guo, “In-Situ detection of small biomolecule interactions using a plasmonic tilted fiber grating sensor,” J. Lightwave Technol. 37(11), 2792–2799 (2019).
V. Márquez-Cruz and J. Albert, “High resolution NIR TFBG-assisted biochemical sensors,” J. Lightwave Technol. 33(16), 3363–3373 (2015).
E. M. Hassan, W. G. Willmore, B. C. Mckay, and M. C. DeRosa, “In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells,” Sci. Rep. 7(1), 14487 (2017).
M. Gijs, G. Penner, G. B. Blackler, N. R. E. N. Impens, S. Baatout, A. Luxen, and A. M. Aerts, “Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer,” Pharmaceuticals 9(2), 29 (2016).
V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, “An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2),” Anal. Biochem. 588, 113471 (2020).
E. Manuylovich, K. Tomyshev, and O. V. Butov, “Method for determining the plasmon resonance wavelength in fiber sensors based on tilted fiber Bragg gratings,” Sensors 19(19), 4245 (2019).
M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Chemical Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Actuators, B 280, 54–61 (2019).