[en] Obesity is characterized by an excessive body mass, but is also closely associated with metabolic syndrome. And, so far, only limited pharmacological treatments are available for obesity management. Celastrol, a pentacyclic triterpenoid from a traditional Chinese medicine (Tripterygii wilfordii Hook.f.), has shown remarkable potency against obesity, inflammation and cancer, but its high toxicity, low natural abundance and tedious chemical synthesis hindered its translation into clinics. In the present work, a triterpenoid library was screened for compounds with both high natural abundance and structural similarity to celastrol; from this library, glycyrrhetinic acid (GA), a compound present in extremely high yields in Glycyrrhiza uralensis Fisch. ex DC., was selected as a possible scaffold for a celastrol mimic active against obesity. A simple chemical modification of GA resulted in GA-02, a derivative that suppressed 68 % of food intake in diet-induced obesity mice and led to 26.4 % weight loss in two weeks. GA-02 plays a role in obesity treatment by re-activating leptin signaling and reducing systemic and, more importantly, hypothalamic inflammation. GA-02 was readily bioavailable with unnoticeable in vitro and in vivo toxicities. The strategy of scaffold search and modification on the basis of bio-content and structural similarity has proved to be a green, economic, efficient and practical way of widening the medicinal applications of 'imperfect' bioactive natural compounds.
Abdelwahab S. I., Hassan L. E., Sirat H. M., Yagi S. M., Koko W. S., Mohan S., et al. (2011). Anti-inflammatory Activities of Cucurbitacin E Isolated from Citrullus lanatus Var. Citroides: Role of Reactive Nitrogen Species and Cyclooxygenase Enzyme Inhibition. Fitoterapia 82, 1190–1197. 10.1016/j.fitote.2011.08.002
Ahima R. S., Flier J. S., (2000). Leptin. Annu. Rev. Physiol. 62, 413–437. 10.1146/annurev.physiol.62.1.413
Ahima R. S., Prabakaran D., Mantzoros C., Qu D., Lowell B., Maratos-Flier E., et al. (1996). Role of Leptin in the Neuroendocrine Response to Fasting. Nature 382, 250–252. 10.1038/382250a0
Allison M. B., Myers M. G., Jr. (2014). 20 Years of Leptin: Connecting Leptin Signaling to Biological Function. J. Endocrinol. 223, T25–T35. 10.1530/JOE-14-0404
Arruda A. P., Milanski M., Coope A., Torsoni A. S., Ropelle E., Carvalho D. P., et al. (2011). Low-grade Hypothalamic Inflammation Leads to Defective Thermogenesis, Insulin Resistance, and Impaired Insulin Secretion. Endocrinology 152, 1314–1326. 10.1210/en.2010-0659
Asl M. N., Hosseinzadeh H., (2008). Review of Pharmacological Effects of Glycyrrhiza Sp. And its Bioactive Compounds. Phytother Res. 22, 709–724. 10.1002/ptr.2362
Baran P. S., (2018). Natural Product Total Synthesis: As Exciting as Ever and Here to Stay. J. Am. Chem. Soc. 140, 4751–4755. 10.1021/jacs.8b02266
Bocarsly M. E., (2018). Pharmacological Interventions for Obesity: Current and Future Targets. Curr. Addict. Rep. 5, 202–211. 10.1007/s40429-018-0204-0
Camelio A. M., Johnson T. C., Siegel D., (2015). Total Synthesis of Celastrol, Development of a Platform to Access Celastroid Natural Products. J. Am. Chem. Soc. 137, 11864–11867. 10.1021/jacs.5b06261
Cascão R., Fonseca J. E., Moita L. F., (2017). Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front. Med. (Lausanne) 4, 69. 10.3389/fmed.2017.00069
Case D. A., Darden T. A., Cheatham T. E., IiiSimmerling C. L., Wang J., Duke R. E., et al. (2012). AMBER 12. San Francisco: University of California.
Considine R. V., Sinha M. K., Heiman M. L., Kriauciunas A., Stephens T. W., Nyce M. R., et al. (1996). Serum Immunoreactive-Leptin Concentrations in normal-weight and Obese Humans. N. Engl. J. Med. 334, 292–295. 10.1056/NEJM199602013340503
Dar K. B., Bhat A. H., Amin S., Hamid R., Anees S., Anjum S., et al. (2018). Modern Computational Strategies for Designing Drugs to Curb Human Diseases: A Prospect. Curr. Top. Med. Chem. 18, 2702–2719. 10.2174/1568026619666190119150741
De Souza C. T., Araujo E. P., Bordin S., Ashimine R., Zollner R. L., Boschero A. C., et al. (2005). Consumption of a Fat-Rich Diet Activates a Proinflammatory Response and Induces Insulin Resistance in the Hypothalamus. Endocrinology 146, 4192–4199. 10.1210/en.2004-1520
Dietrich M. O., Horvath T. L., (2013). Hypothalamic Control of Energy Balance: Insights into the Role of Synaptic Plasticity. Trends Neurosci. 36, 65–73. 10.1016/j.tins.2012.12.005
Dzubak P., Hajduch M., Vydra D., Hustova A., Kvasnica M., Biedermann D., et al. (2006). Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications. Nat. Prod. Rep. 23, 394–411. 10.1039/b515312n
El-Haschimi K., Pierroz D. D., Hileman S. M., Bjørbaek C., Flier J. S., (2000). Two Defects Contribute to Hypothalamic Leptin Resistance in Mice with Diet-Induced Obesity. J. Clin. Invest. 105, 1827–1832. 10.1172/JCI9842
Finucane M. M., Stevens G. A., Cowan M. J., Danaei G., Lin J. K., Paciorek C. J., et al. (2011). National, Regional, and Global Trends in Body-Mass index since 1980: Systematic Analysis of Health Examination Surveys and Epidemiological Studies with 960 Country-Years and 9·1 Million Participants. Lancet 377, 557–567. 10.1016/S0140-6736(10)62037-5
Frederich R. C., Hamann A., Anderson S., Löllmann B., Lowell B. B., Flier J. S., (1995). Leptin Levels Reflect Body Lipid Content in Mice: Evidence for Diet-Induced Resistance to Leptin Action. Nat. Med. 1, 1311–1314. 10.1038/nm1295-1311
Friedman J. M., (2019). Leptin and the Endocrine Control of Energy Balance. Nat. Metab. 1, 754–764. 10.1038/s42255-019-0095-y
Guo L., Luo S., Du Z., Zhou M., Li P., Fu Y., et al. (2017). Targeted Delivery of Celastrol to Mesangial Cells Is Effective against Mesangioproliferative Glomerulonephritis. Nat. Commun. 8, 878. 10.1038/s41467-017-00834-8
Hayashi H., Hattori S., Inoue K., Sarsenbaev K., Ito M., Honda G., (2003). Field Survey of Glycyrrhiza Plants in Central Asia (1). Characterization of G. Uralensis, G. glabra and the Putative Intermediate Collected in Kazakhstan. Biol. Pharm. Bull. 26, 867–871. 10.1248/bpb.26.867
Hotamisligil G. S., (2006). Inflammation and Metabolic Disorders. Nature 444, 860–867. 10.1038/nature05485
Hu X., Saha P., Chen X., Kim D., Devarasetty M., Varadarajan R., et al. (2012). Cell Surface Assembly of HIV Gp41 Six-helix Bundles for Facile, Quantitative Measurements of Hetero-Oligomeric Interactions. J. Am. Chem. Soc. 134, 14642–14645. 10.1021/ja301099s
Hu M., Luo Q., Alitongbieke G., Chong S., Xu C., Xie L., et al. (2017). Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Mol. Cel 66, 141–e6. 10.1016/j.molcel.2017.03.008
Huang Z., Mou Y., Xu X., Zhao D., Lai Y., Xu Y., et al. (2017). Novel Derivative of Bardoxolone Methyl Improves Safety for the Treatment of Diabetic Nephropathy. J. Med. Chem. 60, 8847–8857. 10.1021/acs.jmedchem.7b00971
Kaileh M., Vanden Berghe W., Heyerick A., Horion J., Piette J., Libert C., et al. (2007). Withaferin a Strongly Elicits IkappaB Kinase Beta Hyperphosphorylation Concomitant with Potent Inhibition of its Kinase Activity. J. Biol. Chem. 282, 4253–4264. 10.1074/jbc.M606728200
Kannaiyan R., Shanmugam M. K., Sethi G., (2011). Molecular Targets of Celastrol Derived from Thunder of God Vine: Potential Role in the Treatment of Inflammatory Disorders and Cancer. Cancer Lett. 303, 9–20. 10.1016/j.canlet.2010.10.025
Kumar P., Nagarajan A., Uchil P. D., (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018, 469–471. 10.1101/pdb.prot095505
Lee J., Liu J., Feng X., Salazar Hernández M. A., Mucka P., Ibi D., et al. (2016). Withaferin A Is a Leptin Sensitizer with strong Antidiabetic Properties in Mice. Nat. Med. 22, 1023–1032. 10.1038/nm.4145
Liu J., Lee J., Salazar Hernandez M. A., Mazitschek R., Ozcan U., (2015). Treatment of Obesity with Celastrol. Cell 161, 999–1011. 10.1016/j.cell.2015.05.011
Lumeng C. N., Saltiel A. R., (2011). Inflammatory Links between Obesity and Metabolic Disease. J. Clin. Invest. 121, 2111–2117. 10.1172/JCI57132
Lumeng C. N., Bodzin J. L., Saltiel A. R., (2007). Obesity Induces a Phenotypic Switch in Adipose Tissue Macrophage Polarization. J. Clin. Invest. 117, 175–184. 10.1172/JCI29881
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256
Murtaza M., Khan G., Aftab M. F., Afridi S. K., Ghaffar S., Ahmed A., et al. (2017). Cucurbitacin E Reduces Obesity and Related Metabolic Dysfunction in Mice by Targeting JAK-STAT5 Signaling Pathway. PLoS One 12, e0178910. 10.1371/journal.pone.0178910
Olefsky J. M., Glass C. K., (2010). Macrophages, Inflammation, and Insulin Resistance. Annu. Rev. Physiol. 72, 219–246. 10.1146/annurev-physiol-021909-135846
Pan W. W., Myers M. G., Jr. (2018). Leptin and the Maintenance of Elevated Body Weight. Nat. Rev. Neurosci. 19, 95–105. 10.1038/nrn.2017.168
Papadatos G., van Westen G. J., Croset S., Santos R., Trubian S., Overington J. P., (2014). A Document Classifier for Medicinal Chemistry Publications Trained on the ChEMBL Corpus. J. Cheminform 6, 40. 10.1186/s13321-014-0040-8
Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M. B. P. P., (2018). Liquorice (Glycyrrhiza Glabra): A Phytochemical and Pharmacological Review. Phytother Res. 32, 2323–2339. 10.1002/ptr.6178
Pirzgalska R. M., Seixas E., Seidman J. S., Link V. M., Sánchez N. M., Mahú I., et al. (2017). Sympathetic Neuron-Associated Macrophages Contribute to Obesity by Importing and Metabolizing Norepinephrine. Nat. Med. 23, 1309–1318. 10.1038/nm.4422
Posey K. A., Clegg D. J., Printz R. L., Byun J., Morton G. J., Vivekanandan-Giri A., et al. (2009). Hypothalamic Proinflammatory Lipid Accumulation, Inflammation, and Insulin Resistance in Rats Fed a High-Fat Diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012. 10.1152/ajpendo.90377.2008
Rastelli G., Del Rio A., Degliesposti G., Sgobba M., (2010). Fast and Accurate Predictions of Binding Free Energies Using MM-PBSA and MM-GBSA. J. Comput. Chem. 31, 797–810. 10.1002/jcc.21372
Romanatto T., Cesquini M., Amaral M. E., Roman E. A., Moraes J. C., Torsoni M. A., et al. (2007). TNF-alpha Acts in the Hypothalamus Inhibiting Food Intake and Increasing the Respiratory Quotient-Eeffects on Leptin and Insulin Signaling Pathways. Peptides 28, 1050–1058. 10.1016/j.peptides.2007.03.006
Sastry S. V., Nyshadham J. R., Fix J. A., (2000). Recent Technological Advances in Oral Drug Delivery - a Review. Pharm. Sci. Technol. Today 3, 138–145. 10.1016/s1461-5347(00)00247-9
Swinburn B. A., Sacks G., Hall K. D., McPherson K., Finegood D. T., Moodie M. L., et al. (2011). The Global Obesity Pandemic: Shaped by Global Drivers and Local Environments. Lancet 378, 804–814. 10.1016/S0140-6736(11)60813-1
Tahara A., Nakata T., Ohtsuka Y., (1971). New Type of Compound with strong Sweetness. Nature 233, 619–620. 10.1038/233619a0
Thaler J. P., Yi C. X., Schur E. A., Guyenet S. J., Hwang B. H., Dietrich M. O., et al. (2012). Obesity Is Associated with Hypothalamic Injury in Rodents and Humans. J. Clin. Invest. 122, 153–162. 10.1172/JCI59660
Trosset J. Y., Cavé C., (2019). In Silico Drug-Target Profiling. Methods Mol. Biol. 1953, 89–103. 10.1007/978-1-4939-9145-7_6
Valdearcos M., Xu A. W., Koliwad S. K., (2015). Hypothalamic Inflammation in the Control of Metabolic Function. Annu. Rev. Physiol. 77, 131–160. 10.1146/annurev-physiol-021014-071656
Wellen K. E., Hotamisligil G. S., (2005). Inflammation, Stress, and Diabetes. J. Clin. Invest. 115, 1111–1119. 10.1172/JCI25102
World Health Organization (2021). Obesity and Overweight. Available at: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (Accessed August 22, 2021).
Xiao Z., Morris-Natschke S. L., Lee K. H., (2016). Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Med. Res. Rev. 36, 32–91. 10.1002/med.21377
You R., Long W., Lai Z., Sha L., Wu K., Yu X., et al. (2013). Discovery of a Potential Anti-inflammatory Agent: 3-Oxo-29-Noroleana-1,9(11),12-Trien-2,20-Dicarbonitrile. J. Med. Chem. 56, 1984–1995. 10.1021/jm301652t
Zeng W., Pirzgalska R. M., Pereira M. M., Kubasova N., Barateiro A., Seixas E., et al. (2015). Sympathetic Neuro-Adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84–94. 10.1016/j.cell.2015.08.055
Zhan Y. Y., Chen Y., Zhang Q., Zhuang J. J., Tian M., Chen H. Z., et al. (2012). The Orphan Nuclear Receptor Nur77 Regulates LKB1 Localization and Activates AMPK. Nat. Chem. Biol. 8, 897–904. 10.1038/nchembio.1069
Zhang X., Zhang G., Zhang H., Karin M., Bai H., Cai D., (2008). Hypothalamic IKKbeta/NF-kappaB and ER Stress Link Overnutrition to Energy Imbalance and Obesity. Cell 135, 61–73. 10.1016/j.cell.2008.07.043
Zhang Q., Hu S., Wang K., Cui M., Li X., Wang M., et al. (2018). Engineering a Yeast Double-Molecule Carrier for Drug Screening. Artif. Cell Nanomed Biotechnol 46, 386–396. 10.1080/21691401.2018.1457539