Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A (1999) Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865-869
Aime S, Botta M, Fasano M, Terreno E (1998) Lanthanide(III) chelates for NMR biomedical applications. Chem Soc Rev 27:19-29
Aime S, Botta M, Fasano M, Terreno E (1999) Prototropic and water-exchange processes in aqueous solutions of Gd(III) chelates. Acc Chem Res 32:941-949
Anelli PL, Lattuada L, Lorusso V, Schneider M, Tourner H, Uggeri F (2001) Mixed micelles containing lipophilic gadolinium complexes as MRA contrast agents. MAGMA 12:114-120
Barber PA, Foniok T, Kirk D, Buchan AM, Laurent S, Boutry S, Muller RN, Hoyte L, Tomanek B, Tuor UI (2004) Magnetic resonance molecular imaging (MRMI) of early endothelial activation in focal ischemia in mice. Ann Neurol 56:116-120
Bellin M-F, Webb JAW, Van Der Molen AJ, Thomsen HS, Morcos SK (2005) Safety of MR liver specific contrast media. Eur Radiol 15:1607-1614
Bloembergen NJ (1957) Proton relaxation times in paramagnetic solutions. Chem Phys 27: 572-573
Bogdanov AA Jr, Lewin M, Weissleder R (1999) Approaches and agents for imaging the vascular system. Adv Drug Delivery Rev 37:279-293
Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging, physicochemical characteristics and clinical applications. A review. J Drug Target 6:167-174
Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M,Wittenberg J, Ferrucci JT (1988) Gd-DOTA: characterization of a new paramagnetic complex. Radiology 166:693-698
Boutry S, Burtea C, Laurent S, Vander Elst L, Muller RN (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53:800-807
Boutry S, Laurent S, Vander Elst L, Muller RN (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Med Mol Imaging 1:15-22
Bremer C, Allkemper T, Barmig J, Reimer P (1999) RES-specific imaging of the liver and spleen with iron oxide particles designed for blood pool MR-angiography. J Magn Reson Imaging 10:461-467
Bremer C, Weissleder R (2001) In vivo imaging of gene expression: MR and optical technologies. Acad Radiol 8:15-23
Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484-499
Burtea C, Laurent S, Roch A, Vander Elst L, Muller RN (2005) C-MALISA (cellular magneticlinked immunosorbent assay), a new application of cellular ELISA for MRI. J Inorg Biochem 99:1135-1144
Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, Vansthertem D, Vander Elst L, Muller RN (2008) Molecular imaging of alpha-v beta-3
integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA, Cardiovasc Res, doi: 10.1093/cvr/cvm115.
Cabella C, Geninatti Crich S, Corpillo D, Barge A, Ghirelli C, Bruno E, Lorusso V, Uggeri F, Aime S (2006) Cellular labeling with Gd(III) chelates: only high thermodynamic stabilities prevent the cells acting as 'sponges' of Gd3+ ions. Contrast Med Mol Imaging 1:23-29
Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and toxicity of gadolinium complexes. Magn Reson Imaging 8:467-481
Caravan P, Ellison JJ, McMurry TJ, Lauffer R (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293-2352
Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JWM, Amedio JC, Looby RJ, Supkowski RM, Horrocks WD, McMurry TJ, Lauffer RB (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152-3162
Corot C, Schaefer M, Beaute S, Bourrinet P, Zehaf S (1997) Physical, chemical and biological evaluations of CMD-A2-Gd-DOTA-A new paramagnetic dextran polymer. Acta Radiol 38: 91-99
Corot C, Violas X, Robert P, Gagneur G, Port M (2003) Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Invest Radiol 38:311-319
Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504
De Leon-Rodriguez LM, Ortiz A, Weiner AL, Zhang S, Kovacs Z, Kodadek T, Sherry AD (2002) Magnetic resonance imaging detects a specific peptide-protein binding event. J Am Chem Soc 124:3514-3515
Den Boer JA, Hoogeveen R (2001) Contrast enhanced MR angiography. Medica Mundi 45:10-22
Dousset V, Brochet B, DeloireMSA, Lagoarde L, Barroso B, Caille JM, Petry KJ (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. Am J Neuroradiol 27:1000-1005
Elizondo G, Fnetz CJ, Stank DD, Scott M. Rocklage SM, Quay SC, Wonah D, Tsang YM, Chia-Mei Chen M, Ferrucci JT (1991) Preclinical evaluation of MnDPDP: New paramagnetic hepatobiliary contrast agent for MR imaging. Radiology 178:73-78
Farooki A, Narra V, Brown J, Gadofosveset EPIX/Schering (2004) Curr Opin Investig Drugs 5: 967-976
Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68:4034-4037
Gaillard S, Kubiak C, Stolz C, Bonnemain B, Chassard D (2002) Safety and pharmacokinetics of P792, a new blood-pool agent: results of clinical testing in nonpatient volunteers. Invest Radiol 37:161-166
George AJT, Bhakoo KK, Haskard DO, Larkman DJ, Reynolds PR (2006) Imaging molecular and cellular events in transplantation. Transplantation 82:1124-1129
Gonzalez G, Powell DH, Tissieres V, Merbach AE (1994) Water-exchange, electronic relaxation and rotational dynamics of the MRI contrast agent [Gd(DTPA-BMA)(H2O)] I aqueous solution: a variable pressure, temperature, and magnetic field 17O NMR study. J Phys Chem. 98:53-59
Groman EV, Josephson L. Lewis JM (1989) US Patent, 4827945
Gupta H,Weissleder R (1996) Targeted contrast agents inMR imaging. Magn Reson Imaging Clin N Am 4:171-184
Hamm B, Staks T, Muhler A, Bolbow M, Taupitz M, Frenzel T, Wolf K-J, Weinmann H-J, Lange L (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785-792
Harpur ES, Worah D, Hals P-A, Holtz E, Furuhama K, Nomura H (1993) Preclinical safety assessment and pharmacokinetics of gadodiamide injection, a new magnetic resonance imaging contrast agent. Invest Radiol 28:S28-S432
Helms MK, Petersen CE, Bhagavan NV, Jameson DM (1997) Time-resolved fluorescence studies on site-directed mutants of human serum albumin FEBS Letters, 408:67-70
Herborn CU, Honold E,WolfM, Kemper J, Kinner S, Adam G, Barkhausen J (2007) Clinical safety and diagnostic value of the gadolinium chelate gadoterate meglumine (Gd-DOTA). Invest Radiol 42:58-62
Hogemann D, Ntziachristos V, Josephson L, Weissleder R (2002) High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem 13:116-121
Hovland R, Aasen AJ, Klaveness J (2003) Preparation and in vitro evaluation of GdDOTA-(BOM)4; a novel angiographic MRI contrast agent. Org Biomol Chem 1:1707-1710
Hudgins PA, Anzai Y, Morris MR, Lucas MA (2002) Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: A phase 2 dose study. Am J Neuroradiol 23:649-656
Ichikawa T, Hogemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Chiocca EA, Basilion JP (2002) MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia. 4:523-530
Idee J-M, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563-576
Jacobsen TF, Laniado M, Van Beers BE, Dupas B, Boudghene FP, Rummeny E, Falk TH, Rinck PA, MacVicar D, Lundby B (1996) Oral magnetic particles (ferristene) as a contrast medium in abdominal magnetic resonance imaging. Acad Radiol 3:571-580
Johnson WK, Stoupis C, Torres GM, Rosenberg EB, Ros RR (1996) Superparamagnetic iron oxide (SPIO) as an oral contrast agent in gastrointestinal (GI) magnetic resonance imaging (MRI): comparison with state-of-the-art computed tomography (CT). Magn Reson Imaging 14:43-49
Jung, CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661-674
Karabulut N, Elmas N (2006) Contrast agents used inMR imaging of the liver. Diagn Interv Radiol 12:22-30
Kellar KE, Fujii DK, Guther WHH, Briley-Saebo K, Spiller M, Bjornerud A, Koenig SH (2000) NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488-494
Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 46:781-788
Kroft LJM, de Roos A (1999) Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging 10:395-403
Lanza GM, Lamerichs R, Caruthers S,Wickline SA (2003)Molecular imaging inMR with targeted paramagnetic nanoparticles. Medica Mundi 47:34-39
Lauffer R (1988) Paramagnetic metal complexes as water proton relaxation agents for MRI: theory and design. Chem Rev 187:901-927
Laurent S, Vander Elst L, Houze S,Guerit N, Muller RN (2000) Synthesis and characterization of various benzyl diethylenetriaminepentaacetic acids (DTPA) and their paramagnetic complexes: potential organ specific contrast agents for MRI. Helv Chim Acta 83:394-406
Laurent S, Vander Elst L, Copoix F, Muller RN (2001) Stability of MRI paramagnetic contrast media. A proton relaxometric protocol for transmetallation assessment. Invest Radiol 36:115-122
Laurent S, Botteman F, Vander Elst L, Muller RN, (2004a) Optimising the design of paramagnetic MRI contrast agents: influence of backbone substitution on the water exchange rate of Gd-DTPA derivatives. Magn Reson Mater Phys Biol Med 16:235-245
Laurent S, Botteman F, Vander Elst L, Muller RN (2004b) Relaxivity and transmetallation stability of new benzyl-substituted derivatives of gadolinium-DTPA complexes. Helv Chim Acta 87:1077-1089
Laurent S, Vander Elst L, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Med Mol Imaging 1:128-137
Lauterbur PC (1973) Image formation by induced local interactions- examples employing nuclear magnetic resonance. Nature 242:190-191
Lauterbur PC, Mendonca-Dias MH, Rudin AM (1978) Augmentation of tissue water proton spinlattce relaxation rates by in-vivo addition of paramagnetic ions. In: Dutton PO, Leigh J, Scarpa A (eds) Frontiers of Biological Energetics. Academic Press, New York, pp 752-759
Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxideenhanced MR imaging of head and neck lymph nodes. Radiology 222:239-244
Magerstadt M, Gansow OA, Brechbiel MW, Colcher D, Balzer L, Knop RH, Girton ME, Naegele M (1986) Gadolinium-(DOTA): an alternative to gadolinium-(DTPA) as a T1, 2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Med 3:808-812
Mandry D, Pedersen M, Odile F, Robert P, Corot C, Felblinger J, Grenier N, Claudon M (2005) Renal functional contrast-enhanced magnetic resonance imaging; Evaluation of a new rapidclearance blood pool agent (P792) in Sprague-Dawley rats. Invest Radiol 40:295-305
Marchal G, Zhang X, Ni Y, Van Hecke P, Yu J, Baert AL (1993) Comparison between Gd-DTPA, Gd-EOB-DTPA, and Mn-DPDP in induced HCC in rats: a correlation study of MR imaging, microangiography, and histology. Magn Reson Imaging 11:665-674
Massoud TF, Gambhir SS (2003) Molecular Imaging in living subjects: seeing fundamental biological processes in new light. Genes Dev 17:545-580
McMurry TJ, Parmelee DJ, Sajiki H, Scott DM, Ouellet HS, Walovitch RC, Tyeklar Z, Dumas S, Bernard P, Nadler S, Midelfort K, Greenfield M, Throughton J, Lauffer RB (2002) The effect of a phosphodiester linking group on albumin binding. Blood half-life, and relaxivity of intravascular diethylenetriaminepentaacetato aquo gadolinium(III) MRI contrast agents. J Med Chem 45:3465-3474
Meade TJ, Taylor AK, Bull SR (2003) New magnetic resonance contrast agents as biochemical reporters. Curr Opin Biotechnol 13:597-602
Micskei K, Helm L Brucher E, Merbach AE (1993a) 17O NMR study of water exchange on [Gd(DTPA)H2O]2 and [Gd(DOTA)H2O] related to NMR imaging. Inorg Chem 32: 3844-3850
Micskei K, Powell DH, Helm L, Brucher E, Merbach AE (1993b) Water exchange on [Gd(H2O)8]3+ and [Gd(PDTA)(H2O)2] in aqueous solution: a variable-pressure,-temperature and-magnetic field 17O NMR study. Magn Reson Chem 31:1011-1020
Morisetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0.5M solution for injection (MultiHance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23:S207-S217
Muller RN (1996) Contrast agents in whole body magnetic resonance: operating mechanisms. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, New York, pp 1438-1444
Muller RN, Raduchel B, Laurent S, Platzek J, Pierart C, Mareski P, Vander Elst L (1999) Physicochemical characterization of MS-325, a new gadolinium complex, by multinuclear relaxometry. Eur J Inorg Chem 1949-1955
Muller RN, Roch A, Colet JM, Ouakssim A, Gillis P (2001) Particulate magnetic contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York, pp 417-435
Nunn AD, Linder KE, Tweedle MF (1997) Can receptors be imaged with MRI agents Q J Nucl Med 41:155-162
Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121-137
Ouakssim A, Fastrez S, Roch A, Laurent S, Gossuin Y, Pierart C, Vander Elst L, Muller RN (2004) Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J Magn Magn Mater 272-276:e1711-e1713
Parac-Vogt TN, Kimpe K, Laurent S, Vander Elst L, Burtea C, Chen F, Muller RN, Ni Y, Verbruggen A, Binnemans K (2005) Synthesis, characterization and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. Chem Eur J 11:3077-3086
Parac-Vogt TN, Kimpe K, Laurent S, Pierart C, Vander Elst L, Muller RN, Binnemans K (2006) Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging. Eur Biophys J 35:136-144
Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB (1997) Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32:741-747
Perez JM, Josephson L, O'Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816-820
Petersen SB, Muller RN, Rinck PA (eds) (1985) An introduction to biomedical nuclear magnetic resonance. Thieme, Stuttgart New York
Platzek J, Blaszkiewicz P, Gries H, Luger P, Mishl G, Muller-Fahrnow A, Raduchel B, Sulzle D (1997) Synthesis and structure of a new macrocyclic polyhydroxylated gadolunium chelate used as a contrast agent for magnetic resonance imaging. Inorg Chem 36:6086-6093
Reimer P, Muller M, Marx C, Wiedermann D, Muller RN, Rummeny EJ, Ebert W, Shamsi K, Peters PE (1998) T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555
A: dependence on field strength and plasma concentration-preliminary clinical experience with dynamic T1-weighted MR imaging. Radiology 209:831-836
Reimer P, Schneider G, Schima W (2004a) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559-578
Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004b) Myocardial perfusion and MR angiography of chest with SH U 555 C: Results of placebocontrolled clinical phase I study. Radiology 231:474-481
Rinck PA (ed) (1993) Magnetic resonance in medicine. The basic textbook of the European Magnetic Resonance Forum, 3rd edn. Blackwell, Oxford London Edinburgh Boston Melbourne Paris Berlin
Vienna Roch A, Muller RN (1992) Longitudinal relaxation of water protons in colloidal suspensions of superparamagnetic crystals. Proc11th Annual Meeting of the Society of Magnetic Resonance in Medicine. 11:1447
Roch A, Muller RN, Gillis P (1999a) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403-5411
Roch A, Gillis P, Ouakssim A, Muller RN (1999b) Proton magnetic relaxation in superparamagnetic aqueous colloids: a new tool for the investigation of ferrite crystal anisotropy. J Magn Magn Mater 201:77-79
Roch A, Muller RN, Gillis P (2001) Water relaxation by SPM particles: Neglecting the magnetic anisotropy? A caveat. J Magn Reson Imaging 14:94-96
Roch A, Moiny F, Muller RN, Gillis P (2002) Water magnetic relaxation in superparamagnetic colloid suspensions: the effect of agglomeration. In: Fraissard J, Lapina O (eds) Magnetic resonance in colloid and interface science. Kluwer, Dordrecht, pp 383-392
Rofsky NM, Weinreb JC, Bernardino ME, Young SW, Lee JK, Noz ME (1993) Hepatocellular tumors: characterization with Mn-DPDP-enhanced MR imaging. Radiology 188:53-59
Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol, 40:715-724
Rollo FD (2003) Molecular imaging: an overview and clinical applications. Radiol Manage 25:28-32
Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123-131
Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415-422
Saleh A, Wiedermann D, Schroeter M, Jonkmanns C, Jander S, Hoehn M (2004) Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 17:163-169
Schellenberger EA, Hogemann D, Josephson L,Weissleder R (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 9:S310-S311
Schima W, Saini S, Petersein J, Weissleder R, Harisinghani M, Mayo-Smith W, Hahn PF (1999) MR imaging of the liver with Gd-BOPTA: quantitative analysis of T1-weighted images at two different doses. J Magn Reson Imaging 10:80-83
Schneider G, Prince MR, Meaney JFM, Ho VB (eds) (2005) Magnetic resonance angiography-Techniques, indications and practical applications. Springer, Milan Berlin Heidelberg New York
Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183:59-64
Semelka RC, Helmberger TKG (2001) Contrast agents for MR imaging of the liver. Radiology 218:27-38
Shukla R. Zhang X, Tweedle M. (1991) In vitro determination of correlation times independent of nuclear magnetic resonance dispersion. Inverst Radiol 26:S224-S225
Shuter B, Tofts PS, Wanga S-C, Pope JM (1996) The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Magn Reson Imaging 14:243-253
Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, Styles P, Anthony DC (2004) MRI detection of early endothelial activation in CNS inflammation. Magn Reson Med 51:248-252
Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559-565
Sosnovik DE, Weissleder R (2006) Emerging concepts in molecular MRI. Curr Opin Biotechnol 17:1-7
Stark DD,Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE,Wittenberg J, Ferrucci JT (1988) Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 168:297-301
Tanimoto A, Kuribayashi S (2005) Hepatocyte-targeted MR contrast agents: Contrast enhanced detection of liver cancer in diffusely damaged liver. Magn Reson Med Sci 4:53-60
Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619-2621
Thorek DLJ, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23-38
Toft KG, Hustvedt SO, Grant D, Friisk GA, Skotland T (1997a) Metabolism of mangafodipir trisodium (MnDPDP), a new contrast medium for magnetic resonance imaging, in beagle dogs. Eur J Drug Metab Pharmacokinet 22:65-72
Toft KG, Hustvedt SO, Grant D, Martinsen I, Gordon PB, Friisk GA, Korsmo AJ, Skotland T (1997b) Metabolism and pharmacokinetics of MnDPDP in man. Acta Radiol 38:677-689
Tombach B, Heindel W (2002) Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 12:1550-1556
Toth E, Pubanz D, Vauthey S, Helm L, Merbach AE (1996) High-pressure NMR kinetics. 72. The role of water exchange in attaining maximum relaxivities for dendrimeric MRI contrast agents. Chem Eur J 2:1607-1615
Toth E, Van Uffelen I, Helm L, Merbach AE, Ladd D, Briley-Saebo K, Kellar KE (1998) Gadolinium-based linear polymer with temperature-independent proton relaxivities: a unique interplay between the water exchange and rotational contributions. Magn Reson Chem 36:S125-S134
Toth E, Helm L, Kellar KE, Merbach AE (1999) Gd(DTPA-bisamide)alkyl copolymers: A hint for the formation of MRI contrast agents with very high relaxivity. Chem Eur J 5:1202-1211
Turetschek K, Floyd E, Shames DM, Roberts TPL, Preda A, Novikov V, Corot C, Carter WO, Brasch RC (2001) Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn Reson Med 45:880-886
Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 9:409-415
Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol 30:372-380
Uggeri F, Aime S, Anelli PL, Botta M, Brocchetta M, de Haen C, Ermondi G, Grandi G, Paoli P (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln(III) complexes (Ln = Gd, La, Ln). X-ray structure of disodium (TPS-9-145337286-C-S)-[4-carboxy-5, 8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)] gadolinite (2-) in a mixture with its enantiomer. Inorg Chem 34:633-642
Vander Elst L, Maton F, Laurent S, Seghi F, Chapelle F, Muller RN (1997) A multinuclear MR study of Gd-EOB-DTPA: comprehensive preclinical characterization of an organ specific MRI contrast agent. Magn Reson Med 38:604-614
Vander Elst L, Raynal I, PortM, Tisnes P,Muller RN (2005) In vitro relaxometric and luminiscence characterization of P792 (Gadomelitol, Vistarem) an efficient and rapid clearance blood pool MRI contrast agent. Eur J Inorg Chem 1142-1148
van Montfoort JE, Stieger B, Meijer DKF, Weinmann H-J, Meier PJ, Fattinger KE (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290:153-157
Vogler H, Platzek J, Schuhmann-Giampieri G, Frenzel T, Weimann H-J, Raduchel B, Press WR (1995) Pre-clinical evaluation of gadobutrol: a new neutral, extracellular contrast agent for magnetic resonance imaging. Eur J Radiol 21:1-10
Wang SJ, Brechbiel M, Wiener EC (2003) Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2. Invest Radiol 38:662-668
Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319-2331
Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641-648
Weinmann H-J, Brasch RC, Press W-R, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex, apotential NMR contrast agent. Am J Roentgenol 142:619-624
Weinmann HJ, Schuhmann-Giampiepi G, Schmitt-Willich H, Vogler H, Frenzei, Gries H (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium forMRI.Magn Reson Med 22:233-237
Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 175:489-493
Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316-333
Wiener EC, BrechbielMW, Brothers H,Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1-8
Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. In: Nalwa HS (ed) Encyclopedia of science and nanotechnology, vol 1, pp 815-848
Xu S, Jordan E, Brocke S, Bulte JW, Quigley L, Tresser N, Ostuni JL, Yang Y, mcFarland HF, Frank JA (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in-vivo MRI: early histopathological correlation. J Neurosci Res 52:549-558
Yoshikawa T, Mitchell DG, Hirota S, Ohno Y, Oda K, Maeda T, Fuji M, Sugimura K (2006) Gradient-and spin-echo T2-weighted imaging for SPIO-enhanced detection and characterization of focal liver lesions. J Magn Reson Imaging 23:712-719
Zhang S, Wu K, Sherry AD (2001) Gd3+ complexes with slowly exchanging bound-water molecules may offer advantages in the design of responsive MR agents. Invest Radiol 36:82-86
Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle M (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Med 7: 1241-1244