B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
R. Legaie, C. J. Picken, and J. D. Pritchard, “Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms,” J. Opt. Soc. Am. B 35(4), 892–898 (2018).
T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
D. Leandro, V. deMiguel-Soto, and M. López-Amo, “High-resolution sensor system using a random distributed feedback fiber laser,” J. Lightwave Technol. 34(19), 4596–4602 (2016).
J. L. Bueno Escobedo, V. V. Spirin, C. A. López-Mercado, A. Márquez Lucero, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, “Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor,” Results Phys. 7, 641–643 (2017).
D. K. Shin, B. M. Henson, R. I. Khakimov, J. A. Ross, C. J. Dedman, S. S. Hodgman, and A. G. Truscott, “Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0–1.1 µm,” Opt. Express 24(24), 27403–27414 (2016).
Z. Fang, H. Cai, G. Chen, and R. Qu, Single frequency semiconductor lasers. Springer Singapore (2017).
H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, and Y. Liu, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26(7), 7920–7933 (2018).
D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
J. Lim, A. A. Savchenkov, E. Dale, W. Liang, D. Eliyahu, V. Ilchenko, and C. W. Wong, “Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization,” Nat. Commun. 8(1), 8 (2017).
H. Erzgräber, B. Krauskopf, D. Lenstra, A. P. A. Fischer, and G. Vemuri, “Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback,” Phys. Rev. E 73(5), 055201 (2006).
C. A. López-Mercado, V. V. Spirin, J. L. Bueno Escobedo, A. Márquez Lucero, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, “Locking of the DFB laser through fiber optic resonator on different coupling regimes,” Opt. Commun. 359, 195–199 (2016).
J. L. Bueno Escobedo, V. V. Spirin, C. A. López-Mercado, P. Mégret, I. O. Zolotovskii, and A. A. Fotiadi, “Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior,” Results Phys. 6, 59–60 (2016).
A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19(1), 011003 (2017).
V. V. Spirin, C. A. López-Mercado, P. Mégret, and A. A. Fotiadi, “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser,” Laser Phys. Lett. 9(5), 377–380 (2012).
B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
H. H. Diamandi and A. Zadok, “Ultra-narrowband integrated brillouin laser,” Nat. Photonics 13(1), 9–10 (2019).
S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
H. Shin, W. Qiu, R. Jarecki, J.A. Cox, R.H. Olsson III, A. Starbuck, and P.T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4(1), 1944 (2013).
W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth brillouin laser,” Optica 2(3), 225–232 (2015).
J. Li, X. Yi, H. Lee, S.A. Diddams, and K.J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
S. R. Mirnaziry, C. Wolff, M. Steel, B. Morrison, B. J. Eggleton, and C. G. Poulton, “Lasing in ring resonators by stimulated brillouin scattering in the presence of nonlinear loss,” Opt. Express 25(20), 23619–23633 (2017).
S. R. Mirnaziry, C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated brillouin scattering in integrated ring resonators,” J. Opt. Soc. Am. B 34(5), 937–949 (2017).
C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23(20), 26628–26638 (2015).
N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, and S. J. Madden, “Compact brillouin devices through hybrid integration on silicon,” Optica 4(8), 847–854 (2017).
I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
C. Wolff, B. Stiller, B. J. Eggleton, M. J. Steel, and C. G. Poulton, “Cascaded forward brillouin scattering to all stokes orders,” New J. Phys. 19(2), 023021 (2017).
J. Li, M.-G. Suh, and K. Vahala, “Microresonator brillouin gyroscope,” Optica 4(3), 346–348 (2017).
W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Phys. Rev. A 91(5), 053843 (2015).
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1983).
J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
C. E. Preda, A. A. Fotiadi, and P. Mégret, “Numerical approximation for brillouin fiber ring resonator,” Opt. Express 20(5), 5783 (2012).