Agner, K. Verdoperoxidase: a ferment isolated from leucocytes. Acta Chem. Scand., 1941, 2(Suppl 8), 1-62.
Harrison, J.E.; Schultz, J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem., 1976, 251(5), 1371-1374.
Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol., 2005, 77(5), 598-625.
Pattison, D.I.; Davies, M.J. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry, 2004, 43(16), 4799-4809.
Henderson, J.P.; Byun, J.; Takeshita, J.; Heinecke, J.W. Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J. Biol. Chem., 2003, 278(26), 23522-23528.
Karakas, M.; Koenig, W. Myeloperoxidase production by macrophage and risk of atherosclerosis. Curr. Atheroscler. Rep., 2012, 14(3), 277-283.
Taguchi, J.; Miyazaki, Y.; Tsutsumi, C.; Sawayama, Y.; Ando, K.; Tsushima, H.; Fukushima, T.; Hata, T.; Yoshida, S.; Kuriyama, K.; Honda, S.; Jinnai, I.; Mano, H.; Tomonaga, M. Expression of the myeloperoxidase gene in AC133 positive leukemia cells relates to the prognosis of acute myeloid leukemia. Leuk. Res., 2006, 30(9), 1105-1112.
Gray, E.; Thomas, T.L.; Betmouni, S.; Scolding, N.; Love, S. Elevated myeloperoxidase activity in white matter in multiple sclerosis. Neurosci. Lett., 2008, 444(2), 195-198.
Ximenes, V.F.; Paino, I.M.; Faria-Oliveira, O.M.; Fonseca, L.M.; Brunetti, I.L. Indole ring oxidation by activated leukocytes prevents the production of hypochlorous acid. Braz. J. Med. Biol. Res., 2005, 38(11), 1575-1583.
Malle, E.; Furtmuller, P.G.; Sattler, W.; Obinger, C. Myeloperoxidase: a target for new drug development? Br. J. Pharmacol., 2007, 152(6), 838-854.
Koch, C. Effect of sodium azide upon normal and pathological granulocyte function. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol., 1974, 82(1), 136-142.
Bainton, D.F.; Ullyot, J.L.; Farquhar, M.G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med., 1971, 134(4), 907-934.
Dunn, W.B.; Hardin, J.H.; Spicer, S.S. Ultrastructural localization of myeloperoxidase in human neutrophil and rabbit heterophil and eosinophil leukocytes. Blood, 1968, 32(6), 935-944.
Odell, E.W.; Segal, A.W. The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts. Biochim. Biophys. Acta, 1988, 971(3), 266-274.
Banerjee, S.; Stampler, J.; Furtmuller, P.G.; Obinger, C. Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells. Biochim. Biophys. Acta, 2011, 1814(2), 375-387.
Van Antwerpen, P.; Slomianny, M.C.; Boudjeltia, K.Z.; Delporte, C.; Faid, V.; Calay, D.; Rousseau, A.; Moguilevsky, N.; Raes, M.; Vanhamme, L.; Furtmuller, P.G.; Obinger, C.; Vanhaeverbeek, M.; Neve, J.; Michalski, J.C. Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. J. Biol. Chem., 2010, 285(21), 16351-16359.
Stampler, J.; Bellei, M.; Soudi, M.; Gruber, C.; Battistuzzi, G.; Furtmuller, P.G.; Obinger, C. Manipulating the proximal triad His-Asn-Arg in human myeloperoxidase. Arch. Biochem. Biophys., 2011, 516(1), 21-28.
Van Antwerpen, P.; Zouaoui Boudjeltia, K. Rational drug design applied to myeloperoxidase inhibition. Free Rad. Res., 2015, 49(6), 711-720.
Arnhold, J.; Flemmig, J. Human myeloperoxidase in innate and acquired immunity. Arch. Biochem. Biophys., 2010, 500(1), 92-106.
Griffin, F.M. Jr.; Griffin, J.A.; Leider, J.E.; Silverstein, S.C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med., 1975, 142(5), 1263-1282.
Davies, M.J. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr., 2011, 48(1), 8-19.
Zederbauer, M.; Furtmuller, P.G.; Brogioni, S.; Jakopitsch, C.; Smulevich, G.; Obinger, C. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat. Prod. Rep., 2007, 24(3), 571-584.
Furtmüller, P.G.; Burner, U.; Obinger, C. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry, 1998, 37(51), 17923-17930.
Burtis, C.A.; Ashwood, E.R.; Bruns, D.E.; Tietz, N.W. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. Saunders: St. Louis, Mo. 2006.
Agner, K. Detoxicating effect of verdoperoxidase on toxins. Nature, 1947, 159(4034), 271.
Agner, K. Studies on peroxidative detoxification of purified diphtheria toxin. J. Exp. Med., 1950, 92(4), 337-347.
Klebanoff, S.J.; Green, W.L. Degradation of thyroid hormones by phagocytosing human leukocytes. J. Clin. Iinvest., 1973, 52(1), 60-72.
Klebanoff, S.J. Estrogen binding by leukocytes during phagocytosis. J. Exp. Med., 1977, 145(4), 983-998.
Fiedler, T.J.; Davey, C.A.; Fenna, R.E. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J. Biol. Chem., 2000, 275(16), 11964-11971.
Arnhold, J.; Monzani, E.; Furtmüller, P.G.; Zederbauer, M.; Casella, L.; Obinger, C. Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases. Eur. J. Inorg. Chem., 2006, 2006(19), 3801-3811.
Ximenes, V.F.; Maghzal, G.J.; Turner, R.; Kato, Y.; Winterbourn, C.C.; Kettle, A.J. Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione. Biochem. J., 2010, 425(1), 285-293.
Jantschko, W.; Georg Furtmuller, P.; Zederbauer, M.; Lanz, M.; Jakopitsch, C.; Obinger, C. Direct conversion of ferrous myeloperoxidase to compound II by hydrogen peroxide: an anaerobic stopped-flow study. Biochem. Biophys. Res. Commun., 2003, 312(2), 292-298.
Soubhye, J.; Prevost, M.; Van Antwerpen, P.; Zouaoui Boudjeltia, K.; Rousseau, A.; Furtmuller, P.G.; Obinger, C.; Vanhaeverbeek, M.; Ducobu, J.; Neve, J.; Gelbcke, M.; Dufrasne, F.O. Structure-based design, synthesis, and pharmacological evaluation of 3- (aminoalkyl)-5-fluoroindoles as myeloperoxidase inhibitors. J. Med. Chem., 2010, 53(24), 8747-8759.
Poulos, T.L.; Kraut, J. The stereochemistry of peroxidase catalysis. J. Biol. Chem., 1980, 255(17), 8199-8205.
Furtmüller, P.G.; Arnhold, J.; Jantschko, W.; Pichler, H.; Obinger, C. Redox properties of the couples compound I/compound II and compound II/native enzyme of human myeloperoxidase. Biochem. Biophys. Res. Commun., 2003, 301(2), 551-557.
Arnhold, J.; Furtmuller, P.G.; Obinger, C. Redox properties of myeloperoxidase. Redox. Rep., 2003, 8(4), 179-186.
Arnhold, J.; Furtmuller, P.G.; Regelsberger, G.; Obinger, C. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Eur. J. Biochem., 2001, 268(19), 5142-5148.
Delporte, C.; Franck, T.; Noyon, C.; Dufour, D.; Rousseau, A.; Madhoun, P.; Desmet, J.M.; Serteyn, D.; Raes, M.; Nortier, J.; Vanhaeverbeek, M.; Moguilevsky, N.; Neve, J.; Vanhamme, L.; Van Antwerpen, P.; Zouaoui Boudjeltia, K. Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC-MS/MS after hydrolysis assisted by microwave: application to the study of myeloperoxidase activity during hemodialysis. Talanta, 2012, 99, 603-609.
Cheng, G.; Salerno, J.C.; Cao, Z.; Pagano, P.J.; Lambeth, J.D. Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radic. Biol. Med., 2008, 45(12), 1682-1694.
Li, H.; Cao, Z.; Moore, D.R.; Jackson, P.L.; Barnes, S.; Lambeth, J.D.; Thannickal, V.J.; Cheng, G. Microbicidal activity of vascular peroxidase 1 in human plasma via generation of hypochlorous acid. Infect. Immun., 2012, 80(7), 2528-2537.
Rosamond, W.; Flegal, K.; Furie, K.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.M.; Ho, M.; Howard, V.; Kissela, B.; Kittner, S.; Lloyd-Jones, D.; McDermott, M.; Meigs, J.; Moy, C.; Nichol, G.; O'Donnell, C.; Roger, V.; Sorlie, P.; Steinberger, J.; Thom, T.; Wilson, M.; Hong, Y. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2008, 117(4), e25-146.
Grundy, S.M. Cholesterol and coronary heart disease. A new era. JAMA, 1986, 256(20), 2849-2858.
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
Heinecke, J.W. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis, 1998, 141(1), 1-15.
Delporte, C.; Van Antwerpen, P.; Vanhamme, L.; Roumeguere, T.; Zouaoui Boudjeltia, K. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm., 2013, 2013, 18.
Daugherty, A.; Dunn, J.L.; Rateri, D.L.; Heinecke, J.W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest., 1994, 94(1), 437-444.
Hazen, S.L.; Heinecke, J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest., 1997, 99(9), 2075-2081.
Malle, E.; Waeg, G.; Schreiber, R.; Grone, E.F.; Sattler, W.; Grone, H.J. Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur. J. Biochem., 2000, 267(14), 4495-4503.
Haslacher, H.; Perkmann, T.; Gruenewald, J.; Exner, M.; Endler, G.; Scheichenberger, V.; Wagner, O.; Schillinger, M. Plasma myeloperoxidase level and peripheral arterial disease. Eur. J. Clin. Invest., 2012, 42(5), 463-469.
Nicholls, S.J.; Hazen, S.L. Myeloperoxidase, modified lipoproteins, and atherogenesis. J. Lipid Res., 2009, 50(Suppl), S346-351.
Kannel, W.B.; Castelli, W.P.; Gordon, T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann. Intern. Med., 1979, 90(1), 85-91.
Roman, R.M.; Wendland, A.E.; Polanczyk, C.A. Myeloperoxidase and coronary arterial disease: from research to clinical practice. Arq. Bras. Cardiol., 2008, 91(1), e11-19.
Wu, M.C.; Ho, H.I.; Lee, T.W.; Wu, H.L.; Lo, J.M. In vivo examination of 111In-bis- 5HT-DTPA to target myeloperoxidase in atherosclerotic ApoE knockout mice. J. Drug Target, 2012, 20(7), 605-614.
Itabe, H. Oxidative modification of LDL: its pathological role in atherosclerosis. Clin. Rev. Allergy Immunol., 2009, 37(1), 4-11.
Abu-Soud, H.M.; Hazen, S.L. Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem., 2000, 275(48), 37524-37532.
Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; Zhang, R.; Li, X.M.; Di Donato, A.J.; Gogonea, V.; Tang, W.H.; Smith, J.D.; Plow, E.F.; Fox, P.L.; Shih, D.M.; Lusis, A.J.; Fisher, E.A.; Di Donato, J.A.; Landmesser, U.; Hazen, S.L. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013, 123(9), 3815-3828.
Fu, X.; Kassim, S.Y.; Parks, W.C.; Heinecke, J.W. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J. Biol. Chem., 2001, 276(44), 41279-41287.
Sugiyama, S.; Okada, Y.; Sukhova, G.K.; Virmani, R.; Heinecke, J.W.; Libby, P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am. J. Pathol., 2001, 158(3), 879-891.
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2002, 359(9313), 1221-1231.
Nagra, R.M.; Becher, B.; Tourtellotte, W.W.; Antel, J.P.; Gold, D.; Paladino, T.; Smith, R.A.; Nelson, J.R.; Reynolds, W.F. Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J. Neuroimmunol., 1997, 78(1-2), 97-107.
Green, P.S.; Mendez, A.J.; Jacob, J.S.; Crowley, J.R.; Growdon, W.; Hyman, B.T.; Heinecke, J.W. Neuronal expression of myeloperoxidase is increased in Alzheimer's disease. J. Neurochem., 2004, 90(3), 724-733.
Choi, D.K.; Pennathur, S.; Perier, C.; Tieu, K.; Teismann, P.; Wu, D.C.; Jackson-Lewis, V.; Vila, M.; Vonsattel, J.P.; Heinecke, J.W.; Przedborski, S. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci., 2005, 25(28), 6594-6600.
D'Agati, V. Antineutrophil cytoplasmic antibody and vasculitis: much more than a disease marker. J. Clin. Invest., 2002, 110(7), 919-921.
Hoshino, A.; Nagao, T.; Nagi-Miura, N.; Ohno, N.; Yasuhara, M.; Yamamoto, K.; Nakayama, T.; Suzuki, K. MPOANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner. J. Autoimmun., 2008, 31(1), 79-89.
Anders, H.J.; Wiebecke, B.; Haedecke, C.; Sanden, S.; Combe, C.; Schlondorff, D. MPO-ANCA-Positive crescentic glomerulonephritis: a distinct entity of scleroderma renal disease? Am. J. Kidney Dis., 1999, 33(4), e3.
Ohtani, H.; Wakui, H.; Komatsuda, A.; Chyzh, K.A.; Hatakeyama, T.; Masai, R.; Okuyama, S.; Togashi, M.; Sawada, K. Differences between myeloperoxidase-specific and - nonspecific P-ANCA-associated renal disease. Ren. Fail., 2007, 29(2), 183-187.
Saeki, T.; Kuroda, T.; Morita, T.; Suzuki, K.; Arakawa, M.; Kawasaki, K. Significance of myeloperoxidase in rapidly progressive glomerulonephritis. Am. J. Kidney Dis., 1995, 26(1), 13-21.
Malle, E.; Woenckhaus, C.; Waeg, G.; Esterbauer, H.; Grone, E.F.; Grone, H.J. Immunological evidence for hypochlorite-modified proteins in human kidney. Am. J. Pathol., 1997, 150(2), 603-615.
Ames, B.N. Endogenous DNA damage as related to cancer and aging. Mutat. Res., 1989, 214(1), 41-46.
Esterbauer, H.; Eckl, P.; Ortner, A. Possible mutagens derived from lipids and lipid precursors. Mutat. Res., 1990, 238(3), 223-233.
Henderson, J.P.; Byun, J.; Williams, M.V.; Mueller, D.M.; McCormick, M.L.; Heinecke, J.W. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J. Biol. Chem., 2001, 276(11), 7867-7875.
Pal, B.C.; Cumming, R.B.; Walton, M.F.; Preston, R.J. Environmental pollutant 5-chlorouracil is incorporated in mouse liver and testes DNA. Mutat. Res., 1981, 91(4-5), 395-401.
Hofstra, A.H.; Uetrecht, J.P. Myeloperoxidase-mediated activation of xenobiotics by human leukocytes. Toxicology, 1993, 82(1-3), 221-242.
Rojas, M.; Godschalk, R.; Alexandrov, K.; Cascorbi, I.; Kriek, E.; Ostertag, J.; Van Schooten, F.J.; Bartsch, H. Myeloperoxidase-463A variant reduces benzo[a]pyrene diol epoxide DNA adducts in skin of coal tar treated patients. Carcinogenesis, 2001, 22(7), 1015-1018.
Johnson, E.S.; Langard, S.; Lin, Y.S. A critique of benzene exposure in the general population. Sci. Total Environ., 2007, 374(2-3), 183-198.
Le Marchand, L.; Seifried, A.; Lum, A.; Wilkens, L.R. Association of the myeloperoxidase -463G->a polymorphism with lung cancer risk. Cancer Epidemiol. Biomarkers Prev., 2000, 9(2), 181-184.