F. Bayart and S. Grivaux, Hypercyclicité: le rôle du spectre ponctuel unimodulaire, Comptes Rendus Mathématique. Académie des Sciences. Paris 338 (2004), 703–708.
F. Bayart and S. Grivaux, Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proceedings of the London Mathematical Society 94 (2007), 181–210.
F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.
F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, Vol. 179, Cambridge University Press, Cambridge, 2009.
L. Bernal-González and A. Montes-Rodríguez, Non-finite dimensional closed vector spaces of universal functions for composition operators, Journal of Approximation Theory 82 (1995), 375–391.
J. Bès and Q. Menet, Existence of common and upper frequently hypercyclic subspaces, Journal of Mathematical Analysis and Applications 432 (2015), 10–37.
G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Mathematica 43 (1920), 1–119.
G. D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 189 (1929), 473–475.
J. Bonet and A. Peris, Hypercyclic operators on non-normable Fréchet spaces, Journal of Functional Analysis 159 (1998), 587–595.
A. Bonilla and K.-G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro, Integral Equations and Operator Theory 56 (2006), 151–162.
A. Bonilla and K.-G. Grosse-Erdmann, Frequently hypercyclic subspaces, Monatshefte für Mathematik 168 (2012), 305–320.
P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proceedings of the American Mathematical Society 118 (1993), 845–847.
G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, Journal of Functional Analysis 98 (1991), 229–269.
M. González, F. León-Saavedra and A. Montes-Rodríguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, Proceedings of the London Mathematical Society 81 (2000), 169–189.
K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, London, 2011.
D. A. Herrero, Limits of hypercyclic and supercyclic operators, Journal of Functional Analysis 99 (1991), 179–190.
F. León-Saavedra and V. Müller, Hypercyclic sequences of operators, Studia Mathematica 175 (2006), 1–18.
G. R. MacLane, Sequences of derivatives and normal families, Journal d’Analyse Mathématique 2 (1952/53), 72–87.
Q. Menet, Hypercyclic subspaces and weighted shifts, Advances in Mathematics 255 (2014), 305–337.
Q. Menet, Hypercyclic subspaces on Fréchet spaces without continuous norm, Integral Equations and Operator Theory 77 (2013), 489–520.
Q. Menet, Existence and non-existence of frequently hypercyclic subspaces for weighted shifts, Proceedings of the American Mathematical Society, Proceedings of the American Mathematical Society 143 (2015), 2469–2477.
Q. Menet, Linear chaos and frequent hypercyclicity, Transactions of the American Mathematical Society, to appear.
A. Montes-Rodríguez, Banach spaces of hypercyclic operators, Michigan Mathematical Journal 43 (1996), 419–436.
H. Petersson, Hypercyclic subspaces for Fréchet space operators, Journal of Mathematical Analysis and Applications 319 (2006), 764–782.
S. Shkarin, On the spectrum of frequently hypercyclic operators, Proceedings of the American Mathematical Society 137 (2009), 123–134.
S. Shkarin, On the set of hypercyclic vectors for the differentiation operator, Israel Journal of Mathematics 180 (2010), 271–283.