Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100 (5), 1685-1716, 10.1021/cr980069d
Feringa, B. L.; Browne, W. R. Molecular Switches; Wiley-VCH Verlag GmbH & Co. KGaA, 2011. 10.1002/9783527634408.
Tian, H.; Zhang, J. Photochromic Materials: Preparation, Properties and Applications; Wiley-VCH Verlag GmbH & Co. KGaA, 2016. 10.1002/9783527683734.
Feringa, B. L. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angew. Chem., Int. Ed. 2017, 56 (37), 11060-11078, 10.1002/anie.201702979
Tsivgoulis, G. M.; Lehn, J.-M. Photonic Molecular Devices: Reversibly Photoswitchable Fluorophores for Nondestructive Readout for Optical Memory. Angew. Chem., Int. Ed. Engl. 1995, 34 (10), 1119-1122, 10.1002/anie.199511191
Pärs, M.; Hofmann, C. C.; Willinger, K.; Bauer, P.; Thelakkat, M.; Köhler, J. An Organic Optical Transistor Operated under Ambient Conditions. Angew. Chem. 2011, 123 (48), 11607-11610, 10.1002/ange.201104193
Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E. Single-Molecule Optomechanical Cycle. Science 2002, 296 (5570), 1103-1106, 10.1126/science.1069856
Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld; Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 10.1002/9783527621682.
Zhang, J.; Zou, Q.; Tian, H. Photochromic Materials: More than Meets the Eye. Adv. Mater. 2013, 25 (3), 378-399, 10.1002/adma.201201521
Merino, E. Synthesis of Azobenzenes: The Coloured Pieces of Molecular Materials. Chem. Soc. Rev. 2011, 40 (7), 3835-3853, 10.1039/c0cs00183j
Zimmerman, G.; Chow, L.-Y.; Paik, U.-J. The Photochemical Isomerization of Azobenzene. J. Am. Chem. Soc. 1958, 80 (14), 3528-3531, 10.1021/ja01547a010
Bandara, H. M. D.; Burdette, S. C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41 (5), 1809-1825, 10.1039/C1CS15179G
Siewertsen, R.; Schönborn, J. B.; Hartke, B.; Renth, F.; Temps, F. Superior Z → E and E → Z Photoswitching Dynamics of Dihydrodibenzodiazocine, a Bridged Azobenzene, by S1(Nπ*) Excitation at λ = 387 and 490 Nm. Phys. Chem. Chem. Phys. 2011, 13 (3), 1054-1063, 10.1039/C0CP01148G
Saccone, M.; Siiskonen, A.; Fernandez-Palacio, F.; Priimagi, A.; Terraneo, G.; Resnati, G.; Metrangolo, P. Halogen Bonding Stabilizes a Cis-Azobenzene Derivative in the Solid State: A Crystallographic Study. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2017, 73 (2), 227-233, 10.1107/S2052520617003444
Cisnetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Masiero, S.; Negri, F.; Pieraccini, S.; Spada, G. P. Photochemical and Electronic Properties of Conjugated Bis(Azo) Compounds: An Experimental and Computational Study. Chem.-Eur. J. 2004, 10 (8), 2011-2021, 10.1002/chem.200305590
Bléger, D.; Dokić, J.; Peters, M. V.; Grubert, L.; Saalfrank, P.; Hecht, S. Electronic Decoupling Approach to Quantitative Photoswitching in Linear Multiazobenzene Architectures. J. Phys. Chem. B 2011, 115 (33), 9930-9940, 10.1021/jp2044114
Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Multiphotochromic Molecular Systems. Chem. Soc. Rev. 2015, 44 (11), 3719-3759, 10.1039/C5CS00137D
Bahrenburg, J.; Sievers, C. M.; Schönborn, J. B.; Hartke, B.; Renth, F.; Temps, F.; Näther, C.; Sönnichsen, F. D. Photochemical Properties of Multi-Azobenzene Compounds. Photochem. Photobiol. Sci. 2013, 12 (3), 511-518, 10.1039/C2PP25291K
Xie, Z.; He, H.; Deng, Y.; Wang, X.; Liu, C. Three-Arm Star Compounds Composed of 1,3,5-Tri(Azobenzeneethynyl)Benzene Cores and Flexible PEO Arms: Synthesis, Optical Functions, Hybrid Ormosil Gel Glasses. J. Mater. Chem. C 2013, 1 (9), 1791-1797, 10.1039/c2tc00772j
Kind, J.; Kaltschnee, L.; Leyendecker, M.; Thiele, C. M. Distinction of Trans-Cis Photoisomers with Comparable Optical Properties in Multiple-State Photochromic Systems-Examining a Molecule with Three Azobenzenes via in Situ Irradiation NMR Spectroscopy. Chem. Commun. 2016, 52 (84), 12506-12509, 10.1039/C6CC06771A
Koch, M.; Saphiannikova, M.; Santer, S.; Guskova, O. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective. J. Phys. Chem. B 2017, 121 (37), 8854-8867, 10.1021/acs.jpcb.7b07350
Galanti, A.; Diez-Cabanes, V.; Santoro, J.; Valášek, M.; Minoia, A.; Mayor, M.; Cornil, J.; Samorì, P. Electronic Decoupling in C3-Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. J. Am. Chem. Soc. 2018, 140 (47), 16062-16070, 10.1021/jacs.8b06324
Galanti, A.; Santoro, J.; Mannancherry, R.; Duez, Q.; Diez-Cabanes, V.; Valášek, M.; De Winter, J.; Cornil, J.; Gerbaux, P.; Mayor, M.; Samorì, P. A New Class of Rigid Multi(Azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J. Am. Chem. Soc. 2019, 141 (23), 9273-9283, 10.1021/jacs.9b02544
Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648, 10.1063/1.464913
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, a. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, a. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. a.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, a. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Bahrenburg, J.; Renth, F.; Temps, F.; Plamper, F.; Richtering, W. spectroscopy reveals huge differences in the photoisomerisation dynamics between azobenzenes linked to polymers and. Femtosecond Spectroscopy Reveals Huge Differences in the Photoisomerisation Dynamics between Azobenzenes Linked to Polymers and Azobenzenes in Solution. Phys. Chem. Chem. Phys. 2014, 16 (23), 11549-11554, 10.1039/c4cp01196a
Köhntopp, A.; Dittner, M.; Temps, F. Femtosecond Time-Resolved Dynamics of Trans-Azobenzene on Gold Nanoparticles. J. Phys. Chem. Lett. 2016, 7 (7), 1088-1095, 10.1021/acs.jpclett.6b00102
Quintano, V.; Diez-Cabanes, V.; Dell'Elce, S.; Di Mario, L.; Pelli Cresi, S.; Paladini, A.; Beljonne, D.; Liscio, A.; Palermo, V. Measurement of Conformational Switching of Azobenzenes from Macro-to Attomolar Scale in Self-Assembled 2D and 3D Nanostructures. Phys. Chem. Chem. Phys. 2021, 23 (20), 11698, 10.1039/D1CP00740H
Kellogg, R. M.; Groen, M. B.; Wynberg, H. Photochemically Induced Cyclization of Some Furyl-and Thienylethenes. J. Org. Chem. 1967, 32 (10), 3093-3100, 10.1021/jo01285a035
Jakobsson, F. L. E.; Marsal, P.; Braun, S.; Fahlman, M.; Berggren, M.; Cornil, J.; Crispin, X. Tuning the Energy Levels of Photochromic Diarylethene Compounds for Opto-Electronic Switch Devices. J. Phys. Chem. C 2009, 113 (42), 18396-18405, 10.1021/jp9043573
Herder, M.; Eisenreich, F.; Bonasera, A.; Grafl, A.; Grubert, L.; Pätzel, M.; Schwarz, J.; Hecht, S. Light-Controlled Reversible Modulation of Frontier Molecular Orbital Energy Levels in Trifluoromethylated Diarylethenes. Chem.-Eur. J. 2017, 23 (15), 3743-3754, 10.1002/chem.201605511
Irie, M.; Lifka, T.; Uchida, K.; Kobatake, S.; Shindo, Y. Fatigue Resistant Properties of Photochromic Dithienylethenes: By-Product Formation. Chem. Commun. 1999, (8), 747-748, 10.1039/a809410a
Herder, M.; Schmidt, B. M.; Grubert, L.; Pätzel, M.; Schwarz, J.; Hecht, S. Improving the Fatigue Resistance of Diarylethene Switches. J. Am. Chem. Soc. 2015, 137 (7), 2738-2747, 10.1021/ja513027s
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114 (24), 12174-12277, 10.1021/cr500249p
Mahimwalla, Z.; Yager, K. G.; Mamiya, J. I.; Shishido, A.; Priimagi, A.; Barrett, C. J. Azobenzene Photomechanics: Prospects and Potential Applications. Polym. Bull. 2012, 69 (8), 967-1006, 10.1007/s00289-012-0792-0
Tachibana, H.; Nakamura, T.; Matsumoto, M.; Komizu, H.; Manda, E.; Niino, H.; Yabe, A.; Kawabata, Y. Photochemical Switching in Conductive Langmuir-Blodgett Films. J. Am. Chem. Soc. 1989, 111 (8), 3080-3081, 10.1021/ja00190a061
Yassar, A.; Garnier, F.; Jaafari, H.; Rebière-Galy, N.; Frigoli, M.; Moustrou, C.; Samat, A.; Guglielmetti, R. Light-Triggered Molecular Devices Based on Photochromic Oligothiophene Substituted Chromenes. Appl. Phys. Lett. 2002, 80 (23), 4297-4299, 10.1063/1.1481240
Tsujioka, T.; Masuda, K. Electrical Carrier-Injection and Transport Characteristics of Photochromic Diarylethene Films. Appl. Phys. Lett. 2003, 83 (24), 4978-4980, 10.1063/1.1634375
Hayakawa, R.; Higashiguchi, K.; Matsuda, K.; Chikyow, T.; Wakayama, Y. Optically and Electrically Driven Organic Thin Film Transistors with Diarylethene Photochromic Channel Layers. ACS Appl. Mater. Interfaces 2013, 5 (9), 3625-3630, 10.1021/am400030z
Shallcross, R. C.; Zacharias, P.; Köhnen, A.; Körner, P. O.; Maibach, E.; Meerholz, K. Photochromic Transduction Layers in Organic Memory Elements. Adv. Mater. 2013, 25 (3), 469-476, 10.1002/adma.201202186
Tseng, C. W.; Huang, D. C.; Tao, Y. T. Electric Bistability Induced by Incorporating Self-Assembled Monolayers/Aggregated Clusters of Azobenzene Derivatives in Pentacene-Based Thin-Film Transistors. ACS Appl. Mater. Interfaces 2012, 4 (10), 5483-5491, 10.1021/am3013906
Skabara, P. J.; Arlin, J. B.; Geerts, Y. H. Close Encounters of the 3D Kind-Exploiting High Dimensionality in Molecular Semiconductors. Adv. Mater. 2013, 25 (13), 1948-1954, 10.1002/adma.201200862
Orgiu, E.; Samorì, P. 25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices. Adv. Mater. 2014, 26 (12), 1827-1845, 10.1002/adma.201304695
Weiter, M.; Navrátil, J.; Vala, M.; Toman, P. Photoinduced Reversible Switching of Charge Carrier Mobility in Conjugated Polymers. Eur. Phys. J.: Appl. Phys. 2009, 48 (1), 10401, 10.1051/epjap/2009112
Rekab, W.; Leydecker, T.; Hou, L.; Chen, H.; Kirkus, M.; Cendra, C.; Herder, M.; Hecht, S.; Salleo, A.; McCulloch, I.; Orgiu, E.; Samorì, P. Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. Adv. Funct. Mater. 2020, 30 (5), 1-5, 10.1002/adfm.201908944
Andersson, P.; Robinson, N. D.; Berggren, M. Switchable Charge Traps in Polymer Diodes. Adv. Mater. 2005, 17 (14), 1798-1803, 10.1002/adma.200400842
Orgiu, E.; Crivillers, N.; Herder, M.; Grubert, L.; Pätzel, M.; Frisch, J.; Pavlica, E.; Duong, D. T.; Bratina, G.; Salleo, A.; Koch, N.; Hecht, S.; Samorì, P. Optically Switchable Transistor via Energy-Level Phototuning in a Bicomponent Organic Semiconductor. Nat. Chem. 2012, 4 (8), 675-679, 10.1038/nchem.1384
Hou, L.; Zhang, X.; Cotella, G. F.; Carnicella, G.; Herder, M.; Schmidt, B. M.; Pätzel, M.; Hecht, S.; Cacialli, F.; Samorì, P. Optically Switchable Organic Light-Emitting Transistors. Nat. Nanotechnol. 2019, 14 (4), 347-353, 10.1038/s41565-019-0370-9
Carroli, M.; Duong, D. T.; Buchaca-Domingo, E.; Liscio, A.; Börjesson, K.; Herder, M.; Palermo, V.; Hecht, S.; Stingelin, N.; Salleo, A.; Orgiu, E.; Samorì, P. The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/p-Type Polymer Semiconductor Blend. Adv. Funct. Mater. 2020, 30 (20), 1-8, 10.1002/adfm.201907507
Hou, L.; Leydecker, T.; Zhang, X.; Rekab, W.; Herder, M.; Cendra, C.; Hecht, S.; McCulloch, I.; Salleo, A.; Orgiu, E.; Samorì, P. Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices. J. Am. Chem. Soc. 2020, 142 (25), 11050-11059, 10.1021/jacs.0c02961
Smithson, C. S.; Ljubic, D.; Wu, Y.; Zhu, S. The Effect of Azobenzene Derivatives on UV-Responsive Organic Thin-Film Transistors with a 2,7-Dipentylbenzo[b]Benzo[4,5]Thieno[2,3-d]Thiophene Semiconductor. J. Mater. Chem. C 2015, 3 (31), 8090-8096, 10.1039/C5TC01251A
Gemayel, M. E.; Borjesson, K.; Herder, M.; Duong, D. T.; Hutchison, J. A.; Ruzie, C.; Schweicher, G.; Salleo, A.; Geerts, Y.; Hecht, S.; Orgiu, E.; Samori, P. Optically Switchable Transistors by Simple Incorporation of Photochromic Systems into Small-Molecule Semiconducting Matrices. Nat. Commun. 2015, 6, 1-8, 10.1038/ncomms7330
Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96 (4), 1533-1554, 10.1021/cr9502357
Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F. Self-Assembled Monolayers in Organic Electronics. Chem. Soc. Rev. 2017, 46 (1), 40-71, 10.1039/C6CS00509H
Campbell, I.; Rubin, S.; Zawodzinski, T.; Kress, J.; Martin, R.; Smith, D.; Barashkov, N.; Ferraris, J. Controlling Schottky Energy Barriers in Organic Electronic Devices Using Self-Assembled Monolayers. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54 (20), 14321-14324, 10.1103/PhysRevB.54.R14321
Boer, B. d.; Hadipour, A.; Mandoc, M. M.; Blom, P. W. M. Tuning of Metal Work Function with Self-Assembled Monolayers. Mater. Res. Soc. Symp. Proc. 2005, 871, 189-196, 10.1557/PROC-871-I6.12
Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Adv. Mater. 1999, 11 (8), 605-625, 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.3.CO;2-H
Chen, Y. C.; Cunningham, J. E.; Flynn, C. P. Dependence of Rare-Gas-Adsorbate Dipole Moment on Substrate Work Function Yen. Phys. Rev. B: Condens. Matter Mater. Phys. 1984, 30 (12), 7317-7319, 10.1103/PhysRevB.30.7317
Wang, Q.; Ligorio, G.; Diez-Cabanes, V.; Cornil, D.; Kobin, B.; Hildebrandt, J.; Nardi, M. V.; Timpel, M.; Hecht, S.; Cornil, J.; List-Kratochvil, E. J. W.; Koch, N. Dynamic Photoswitching of Electron Energy Levels at Hybrid ZnO/Organic Photochromic Molecule Junctions. Adv. Funct. Mater. 2018, 28 (28), 1-9, 10.1002/adfm.201800716
Fahlman, M.; Crispin, A.; Crispin, X.; Henze, S. K. M.; De Jong, M. P.; Osikowicz, W.; Tengstedt, C.; Salaneck, W. R. Electronic Structure of Hybrid Interfaces for Polymer-Based Electronics. J. Phys.: Condens. Matter 2007, 19 (18), 183202, 10.1088/0953-8984/19/18/183202
Heimel, G.; Romaner, L.; Brédas, J. L.; Zojer, E. Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions: π-Conjugated Thiols on Gold. Phys. Rev. Lett. 2006, 96 (19), 2-5, 10.1103/PhysRevLett.96.196806
Rusu, P. C.; Brocks, G. Work Functions of Self-Assembled Monolayers on Metal Surfaces by First-Principles Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74 (7), 1-4, 10.1103/PhysRevB.74.073414
De Renzi, V.; Rousseau, R.; Marchetto, D.; Biagi, R.; Scandolo, S.; Del Pennino, U. Metal Work-Function Changes Induced by Organic Adsorbates: A Combined Experimental and Theoretical Study. Phys. Rev. Lett. 2005, 95 (4), 3-6, 10.1103/PhysRevLett.95.046804
Cornil, D.; Olivier, Y.; Geskin, V.; Cornil, J. Depolarization Effects in Self-Assembled Monolayers: A Quantum-Chemical Insight. Adv. Funct. Mater. 2007, 17 (7), 1143-1148, 10.1002/adfm.200601116
Sushko, M. L.; Shluger, A. L. Intramolecular Dipole Coupling and Depolarization in Self-Assembled Monolayers. Adv. Funct. Mater. 2008, 18 (15), 2228-2236, 10.1002/adfm.200701305
Margapoti, E.; Li, J.; Ceylan, O.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C.-A.; Barth, J. V.; Finley, J. J. A 2D Semiconductor-Self-Assembled Monolayer Photoswitchable Diode. Adv. Mater. 2015, 27 (8), 1-6, 10.1002/adma.201405110
Pace, G.; Ferri, V.; Grave, C.; Elbing, M.; von Hanisch, C.; Zharnikov, M.; Mayor, M.; Rampi, M. A.; Samori, P. Cooperative Light-Induced Molecular Movements of Highly Ordered Azobenzene Self-Assembled Monolayers. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (24), 9937-9942, 10.1073/pnas.0703748104
Crivillers, N.; Liscio, A.; Di Stasio, F.; Van Dyck, C.; Osella, S.; Cornil, D.; Mian, S.; Lazzerini, G. M.; Fenwick, O.; Orgiu, E.; Reinders, F.; Braun, S.; Fahlman, M.; Mayor, M.; Cornil, J.; Palermo, V.; Cacialli, F.; Samorì, P. Photoinduced Work Function Changes by Isomerization of a Densely Packed Azobenzene-Based SAM on Au: A Joint Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2011, 13 (32), 14302-14310, 10.1039/c1cp20851a
Crivillers, N.; Osella, S.; Van Dyck, C.; Lazzerini, G. M.; Cornil, D.; Liscio, A.; Di Stasio, F.; Mian, S.; Fenwick, O.; Reinders, F.; Neuburger, M.; Treossi, E.; Mayor, M.; Palermo, V.; Cacialli, F.; Cornil, J.; Samorì, P. Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzene-Based Self-Assembled Monolayer. Adv. Mater. 2013, 25 (3), 432-436, 10.1002/adma.201201737
Masillamani, A. M.; Osella, S.; Liscio, A.; Fenwick, O.; Reinders, F.; Mayor, M.; Palermo, V.; Cornil, J.; Samorì, P. Light-Induced Reversible Modification of the Work Function of a New Perfluorinated Biphenyl Azobenzene Chemisorbed on Au (111). Nanoscale 2014, 6 (15), 8969-8977, 10.1039/C4NR01880J
Schuster, S.; Füser, M.; Asyuda, A.; Cyganik, P.; Terfort, A.; Zharnikov, M. Photoisomerization of Azobenzene-Substituted Alkanethiolates on Au(111) Substrates in Context of Work Function Variation: The Effect of Structure and Packing Density. Phys. Chem. Chem. Phys. 2019, 21 (18), 9098-9105, 10.1039/C9CP00255C
Wang, L.; Rangger, G. M.; Romaner, L.; Heimel, G.; BucIko, T.; Ma, Z.; Li, Q.; Shuai, Z.; Zojer, E. Electronic Structure of Self-Assembled Monolayers on Au(111) Surfaces: The Impact of Backbone Polarizability. Adv. Funct. Mater. 2009, 19 (23), 3766-3775, 10.1002/adfm.200901152
Egger, D. A.; Zojer, E. Anticorrelation between the Evolution of Molecular Dipole Moments and Induced Work Function Modifications. J. Phys. Chem. Lett. 2013, 4 (20), 3521-3526, 10.1021/jz401721r
Mosciatti, T.; del Rosso, M. G.; Herder, M.; Frisch, J.; Koch, N.; Hecht, S.; Orgiu, E.; Samori, P. Light-Modulation of the Charge Injection in a Polymer Thin-Film Transistor by Functionalizing the Electrodes with Bistable Photochromic Self-Assembled Monolayers. Adv. Mater. 2016, 28 (31), 6606-6611, 10.1002/adma.201600651
Crivillers, N.; Orgiu, E.; Reinders, F.; Mayor, M.; Samorì, P. Optical Modulation of the Charge Injection in an Organic Field-Effect Transistor Based on Photochromic Self-Assembled-Monolayer-Functionalized Electrodes. Adv. Mater. 2011, 23 (12), 1447-1452, 10.1002/adma.201003736
Yasuda, S.; Nakamura, T.; Matsumoto, M.; Shigekawa, H. Phase Switching of a Single Isomeric Molecule and Associated Characteristic Rectification. J. Am. Chem. Soc. 2003, 125 (52), 16430-16433, 10.1021/ja038233o
Raimondo, C.; Crivillers, N.; Reinders, F.; Sander, F.; Mayor, M.; Samorì, P. Optically Switchable Organic Field-Effect Transistors Based on Photoresponsive Gold Nanopartides Blended with Poly (3-Hexylthiophene). Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (31), 12375-12380, 10.1073/pnas.1203848109
van der Molen, S. J.; Liao, J.; Kudernac, T.; Agustsson, J. S.; Bernard, L.; Calame, M.; van Wees, B. J.; Feringa, B. L.; Schonenberger, C. Light-Controlled Conductance Switching of Ordered Metal-Molecule-Metal. Nano Lett. 2009, 9 (1), 76-80, 10.1021/nl802487j
Salinas, M.; Halik, M. Photoactive Self-Assembled Monolayers for Optically Switchable Organic Thin-Film Transistors. Appl. Phys. Lett. 2013, 102 (20), 203301, 10.1063/1.4804595
Tang, Z.; George, A.; Winter, A.; Kaiser, D.; Neumann, C.; Weimann, T.; Turchanin, A. Optically Triggered Control of the Charge Carrier Density in Chemically Functionalized Graphene Field Effect Transistors. Chem.-Eur. J. 2020, 26 (29), 6473-6478, 10.1002/chem.202000431
Zhao, Y.; Ippolito, S.; Samorì, P. Functionalization of 2D Materials with Photosensitive Molecules: From Light-Responsive Hybrid Systems to Multifunctional Devices. Adv. Opt. Mater. 2019, 7 (16), 1-25, 10.1002/adom.201900286
Zhao, Y.; Bertolazzi, S.; Samorì, P. A Universal Approach toward Light-Responsive Two-Dimensional Electronics: Chemically Tailored Hybrid van Der Waals Heterostructures. ACS Nano 2019, 13 (4), 4814-4825, 10.1021/acsnano.9b01716
Liu, Z.; Wang, H. I.; Narita, A.; Chen, Q.; Mics, Z.; Turchinovich, D.; Klaui, M.; Bonn, M.; Mullen, K. Photoswitchable Micro-Supercapacitor Based on a Diarylethene-Graphene Composite Film. J. Am. Chem. Soc. 2017, 139 (28), 9443-9446, 10.1021/jacs.7b04491
Hou, I. C. Y.; Diez-Cabanes, V.; Galanti, A.; Valášek, M.; Mayor, M.; Cornil, J.; Narita, A.; Samorì, P.; Müllen, K. Photomodulation of Two-Dimensional Self-Assembly of Azobenzene-Hexa-Peri-Hexabenzocoronene-Azobenzene Triads. Chem. Mater. 2019, 31 (17), 6979-6985, 10.1021/acs.chemmater.9b01535
Aradhya, S. V.; Venkataraman, L. Single-Molecule Junctions beyond Electronic Transport. Nat. Nanotechnol. 2013, 8 (6), 399-410, 10.1038/nnano.2013.91
Stadler, R.; Geskin, V.; Cornil, J. A Theoretical View of Unimolecular Rectification. J. Phys.: Condens. Matter 2008, 20, 374105, 10.1088/0953-8984/20/37/374105
Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Brédas, J. L.; Stuhr-Hansen, N.; Hedegård, P.; Bjørnholm, T. Single-Electron Transistor of a Single Organic Molecule with Access to Several Redox States. Nature 2003, 425 (6959), 698-701, 10.1038/nature02010
Huang, X.; Li, T. Recent Progress in the Development of Molecular-Scale Electronics Based on Photoswitchable Molecules. J. Mater. Chem. C 2020, 8 (3), 821-848, 10.1039/C9TC06054E
Liu, Y.; Lagrost, C.; Costuas, K.; Tchouar, N.; Bozec, H. Le; Rigaut, S. A Multifunctional Organometallic Switch with Carbon-Rich Ruthenium and Diarylethene Units. Chem. Commun. 2008, (46), 6117-6119, 10.1039/b815899a
Goswami, S.; Matula, A. J.; Rath, S. P.; Hedström, S.; Saha, S.; Annamalai, M.; Sengupta, D.; Patra, A.; Ghosh, S.; Jani, H.; Sarkar, S.; Motapothula, M. R.; Nijhuis, C. A.; Martin, J.; Goswami, S.; Batista, V. S.; Venkatesan, T. Robust Resistive Memory Devices Using Solution-Processable Metal-Coordinated Azo Aromatics. Nat. Mater. 2017, 16 (12), 1216-1224, 10.1038/nmat5009
Kim, Y.; Garcia-Lekue, A.; Sysoiev, D.; Frederiksen, T.; Groth, U.; Scheer, E. Charge Transport in Azobenzene-Based Single-Molecule Junctions. Phys. Rev. Lett. 2012, 109 (22), 1-5, 10.1103/PhysRevLett.109.226801
Osella, S.; Samorì, P.; Cornil, J. Photoswitching Azobenzene Derivatives in Single Molecule Junctions: A Theoretical Insight into the I/V Characteristics. J. Phys. Chem. C 2014, 118 (32), 18721-18729, 10.1021/jp504582a
Mativetsky, J. M.; Pace, G.; Elbing, M.; Rampi, M. A.; Mayor, M.; Samorì, P. Azobenzenes as Light-Controlled Molecular Electronic Switches in Nanoscale Metal-Molecule-Metal Junctions. J. Am. Chem. Soc. 2008, 130 (29), 9192-9193, 10.1021/ja8018093
Smaali, K.; Lenfant, S.; Karpe, S.; Ocafrain, M.; Blanchard, P.; Deresmes, D.; Godey, S.; Rochefort, A.; Roncali, J.; Vuillaume, D. High On-OffConductance Switching Ratio in Optically-Driven Self-Assembled Conjugated Molecular Systems. ACS Nano 2010, 4 (4), 2411-2421, 10.1021/nn100295x
Zhang, C.; Du, M. H.; Cheng, H. P.; Zhang, X. G.; Roitberg, A. E.; Krause, J. L. Coherent Electron Transport through an Azobenzene Molecule: A Light-Driven Molecular Switch. Phys. Rev. Lett. 2004, 92 (15), 1-4, 10.1103/PhysRevLett.92.158301
Ho Choi, S.; Kim, B.; Frisbie, C. D. Electrical Resistance of Long Conjugated Molecular Wires. Science 2008, 320 (5882), 1482-1486, 10.1126/science.1156538
Meng, L.; Xin, N.; Hu, C.; Wang, J.; Gui, B.; Shi, J.; Wang, C.; Shen, C.; Zhang, G.; Guo, H.; Meng, S.; Guo, X. Side-Group Chemical Gating via Reversible Optical and Electric Control in a Single Molecule Transistor. Nat. Commun. 2019, 10, 1450, 10.1038/s41467-019-09120-1
Lenfant, S.; Viero, Y.; Krzeminski, C.; Vuillaume, D.; Demeter, D.; Dobra, I.; Oçafrain, M.; Blanchard, P.; Roncali, J.; Van Dyck, C.; Cornil, J. New Photomechanical Molecular Switch Based on a Linear π-Conjugated System. J. Phys. Chem. C 2017, 121 (22), 12416-12425, 10.1021/acs.jpcc.7b01240
Choi, B. Y.; Kahng, S. J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Conformational Molecular Switch of the Azobenzene Molecule: A Scanning Tunneling Microscopy Study. Phys. Rev. Lett. 2006, 96 (15), 1-4, 10.1103/PhysRevLett.96.156106
Dulić, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. J. One-Way Optoelectronic Switching of Photochromic Molecules on Gold. Phys. Rev. Lett. 2003, 91 (20), 1-4, 10.1103/PhysRevLett.91.207402
Kronemeijer, A. J.; Akkerman, H. B.; Kudernac, T.; Van Wees, B. J.; Feringa, B. L.; Blom, P. W. M.; De Boer, B. Reversible Conductance Switching in Molecular Devices. Adv. Mater. 2008, 20 (8), 1467-1473, 10.1002/adma.200800053
Sendler, T.; Luka-Guth, K.; Wieser, M.; Lokamani; Wolf, J.; Helm, M.; Gemming, S.; Kerbusch, J.; Scheer, E.; Huhn, T.; Erbe, A. Light-Induced Switching of Tunable Single-Molecule Junctions. Adv. Sci. 2015, 2 (5), 1-7, 10.1002/advs.201500017
Meng, F.; Hervault, Y.-M.; Norel, L.; Costuas, K.; Van Dyck, C.; Geskin, V.; Cornil, J.; Hng, H. H.; Rigaut, S.; Chen, X. Photo-Modulable Molecular Transport Junctions Based on Organometallic Molecular Wires. Chem. Sci. 2012, 3 (10), 3113-3118, 10.1039/c2sc20323e
Van Dyck, C.; Geskin, V.; Kronemeijer, A. J.; De Leeuw, D. M.; Cornil, J. Impact of Derivatization on Electron Transmission through Dithienylethene-Based Photoswitches in Molecular Junctions. Phys. Chem. Chem. Phys. 2013, 15 (12), 4392-4404, 10.1039/c3cp44132f
Van Dyck, C.; Geskin, V.; Cornil, J. Fermi Level Pinning and Orbital Polarization Effects in Molecular Junctions: The Role of Metal Induced Gap States. Adv. Funct. Mater. 2014, 24 (39), 6154-6165, 10.1002/adfm.201400809
Rodriguez-Gonzalez, S.; Xie, Z.; Galangau, O.; Selvanathan, P.; Norel, L.; Van Dyck, C.; Costuas, K.; Frisbie, C. D.; Rigaut, S.; Cornil, J. HOMO Level Pinning in Molecular Junctions: Joint Theoretical and Experimental Evidence. J. Phys. Chem. Lett. 2018, 9 (9), 2394-2403, 10.1021/acs.jpclett.8b00575
Wang, Q.; Diez-Cabanes, V.; Dell'elce, S.; Liscio, A.; Kobin, B.; Li, H.; Brédas, J. L.; Hecht, S.; Palermo, V.; List-Kratochvil, E. J. W.; Cornil, J.; Koch, N.; Ligorio, G. Dynamically Switching the Electronic and Electrostatic Properties of Indium-Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Appl. Nano Mater. 2019, 2 (2), 1102-1110, 10.1021/acsanm.9b00094
Wang, Q.; Frisch, J.; Herder, M.; Hecht, S.; Koch, N. Electronic Properties of Optically Switchable Photochromic Diarylethene Molecules at the Interface with Organic Semiconductors. ChemPhysChem 2017, 18 (7), 722-727, 10.1002/cphc.201601442
Hnid, I.; Frath, D.; Lafolet, F.; Sun, X.; Lacroix, J. C. Highly Efficient Photoswitch in Diarylethene-Based Molecular Junctions. J. Am. Chem. Soc. 2020, 142 (17), 7732-7736, 10.1021/jacs.0c01213
Zhang, J. L.; Zhong, Q.; Lin, D.; Hu, P.; Wu, K.; Xu, G. Q.; Wee, T. S.; Chen, W. Towards Single Molecule Switches. Chem. Soc. Rev. 2015, 44 (10), 2998-3022, 10.1039/C4CS00377B
Galbiati, M.; Tatay, S.; Barraud, C.; Dediu, A. V.; Petroff, F.; Mattana, R.; Seneor, P. Spinterface: Crafting Spintronics at the Molecular Scale. MRS Bull. 2014, 39, 602-607, 10.1557/mrs.2014.131
Barraud, C.; Seneor, P.; Mattana, R.; Fusil, S.; Bouzehouane, K.; Deranlot, C.; Graziosi, P.; Hueso, L.; Bergenti, I.; Dediu, V.; Petroff, F.; Fert, A. Unravelling the Role of the Interface for Spin Injection into Organic Semiconductors. Nat. Phys. 2010, 6 (8), 615-620, 10.1038/nphys1688
Sanvito, S. Molecular Spintronics: The Rise of Spinterface Science. Nat. Phys. 2010, 6 (8), 562-564, 10.1038/nphys1714
Cinchetti, M.; Dediu, V. A.; Hueso, L. E. Activating the Molecular Spinterface. Nat. Mater. 2017, 16 (5), 507-515, 10.1038/nmat4902
Steil, S.; Großmann, N.; Laux, M.; Ruffing, A.; Steil, D.; Wiesenmayer, M.; Mathias, S.; Monti, O. L. A.; Cinchetti, M.; Aeschlimann, M. Spin-Dependent Trapping of Electrons at Spinterfaces. Nat. Phys. 2013, 9 (4), 242-247, 10.1038/nphys2548
Sun, M.; Mi, W. Progress in Organic Molecular/Ferromagnet Spinterfaces: Towards Molecular Spintronics. J. Mater. Chem. C 2018, 6 (25), 6619-6636, 10.1039/C8TC01399C