Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
My Espace Recherche
Projects Module
PhD Module
Statistics
Help
Table of Content
Add a new publication
Legal information
About
What's ORBi
Release notes
OAI-PMH
Impact and Visibility
Deposit Charter
News
Explore
PeriScops
Back
Home
Detailed Reference
Request a copy
Article (Scientific journals)
Gamma-supercyclicity
Charpentier, Stéphane
;
Ernst, Romuald
;
Menet, Quentin
2016
•
In
Journal of Functional Analysis, 270
, p. 4443-4465
Peer Reviewed verified by ORBi
Permalink
https://hdl.handle.net/20.500.12907/22292
DOI
10.1016/j.jfa.2016.03.005
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
2016_Gamma-Supercyclicity.pdf
Publisher postprint (473.81 kB)
Request a copy
All documents in ORBi UMONS are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Disciplines :
Mathematics
Author, co-author :
Charpentier, Stéphane
Ernst, Romuald
Menet, Quentin
;
Université de Mons - UMONS > Faculté des Sciences > Service de Probabilité et statistique
Language :
English
Title :
Gamma-supercyclicity
Publication date :
15 June 2016
Journal title :
Journal of Functional Analysis
ISSN :
0022-1236
eISSN :
1096-0783
Publisher :
Elsevier, Atlanta, Georgia
Volume :
270
Pages :
4443-4465
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S844 - Probabilité et statistique
Research institute :
R150 - Institut de Recherche sur les Systèmes Complexes
Available on ORBi UMONS :
since 08 January 2017
Statistics
Number of views
4 (0 by UMONS)
Number of downloads
0 (0 by UMONS)
More statistics
Scopus citations
®
8
Scopus citations
®
without self-citations
7
OpenCitations
5
OpenAlex citations
7
Bibliography
Ansari S.I. Hypercyclic and cyclic vectors. J. Funct. Anal. 1995, 128(2):374-383.
Bayart F., Grivaux S. Hypercyclicité: le rôle du spectre ponctuel unimodulaire. C. R. Math. Acad. Sci. Paris 2004, 338(9):703-708.
Bayart F., Matheron É. Hypercyclic operators failing the hypercyclicity criterion on classical banach spaces. J. Funct. Anal. 2007, 250(2):426-441.
Bayart F., Matheron É. Dynamics of Linear Operators. Cambridge Tracts in Mathematics 2009, Cambridge University Press.
Bermúdez T., Bonilla A., Peris A. C-supercyclic versus R+-supercyclic operators. Arch. Math. (Basel) 2002, 79(2):125-130.
Bermúdez T., Bonilla A., Peris A. On hypercyclicity and supercyclicity criteria. Bull. Aust. Math. Soc. 2004, 70:45.
Bès J.P. Three problems on hypercyclic operators 1998, PhD thesis, Kent State University, USA.
Bès J., Peris A. Hereditarily hypercyclic operators. J. Funct. Anal. 1999, 167(1):94-112.
Birkhoff G.D. Démonstration d'un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris 1929, 189:473-475.
Bourdon P.S., Feldman N.S. Somewhere dense orbits are everywhere dense. Indiana Univ. Math. J. 2003, 52(3):811-819.
Costakis G. On a conjecture of D. Herrero concerning hypercyclic operators. C. R. Acad. Sci. Paris Sér. I Math. 2000, 330(3):179-182.
Costakis G., Peris A. Hypercyclic semigroups and somewhere dense orbits. C. R. Acad. Sci. Paris Sér. I Math. 2002, 335(11):895-898.
Ernst R. Strongly n-supercyclic operators. J. Operator Theory 2014, 71(2):427-453.
Feldman N.S. Perturbations of hypercyclic vectors. J. Math. Anal. Appl. 2002, 273(1):67-74.
Feldman N.S. n-Supercyclic operators. Studia Math. 2002, 151(2):141-159.
Feldman N.S. Countably hypercyclic operators. J. Operator Theory 2003, 50(1):107-117.
Grosse-Erdmann K.-G., Peris A. Linear Chaos. Universitext Series 2011, Springer.
Herrero D.A. Hypercyclic operators and chaos. J. Operator Theory 1992, 28(1):93-103.
Hilden H.M., Wallen L.J. Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 1973/1974, 23:557-565.
Kitai C. Invariant Closed Sets for Linear Operators 1982, ProQuest LLC, Ann Arbor, MI, PhD thesis, University of Toronto, Canada.
León-Saavedra F. The positive supercyclicity theorem. Extracta Math. 2004, 19(1):145-149.
León-Saavedra F., Müller V. Rotations of hypercyclic and supercyclic operators. Integral Equations Operator Theory 2004, 50(3):385-391.
MacLane G.R. Sequences of derivatives and normal families. J. Anal. Math. 1952, 2:72-87.
Matheron É. Subsemigroups of transitive semigroups. Ergodic Theory Dynam. Systems 2012, 32(3):1043-1071.
Montes-Rodríguez A., Salas H.N. Supercyclic subspaces: spectral theory and weighted shifts. Adv. Math. 2001, 163(1):74-134.
Peris A. Multi-hypercyclic operators are hypercyclic. Math. Z. 2001, 236(4):779-786.
Rolewicz S. On orbits of elements. Studia Math. 1969, 32:17-22.
Salas H.N. Supercyclicity and weighted shifts. Studia Math. 1999, 135(1):55-74.
Shkarin S. Universal elements for non-linear operators and their applications. J. Math. Anal. Appl. 2008, 348(1):193-210.
Shkarin S. On the spectrum of frequently hypercyclic operators. Proc. Amer. Math. Soc. 2009, 137(1):123-134.
Similar publications
Contact ORBi UMONS