Article (Scientific journals)
Towards a Theoretical Description of Molecular Junctions in the Coulomb Blockade Regime Based on Density Functional Theory
Stadler, R.; Geskin, V.M.; Cornil, Jérôme
2008In Physical Review, 78 (11), p. 113402
Peer reviewed
 

Files


Full Text
cmn351.pdf
Author postprint (137.76 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Abstract :
[en] Non-equilibrium Greens function techniques (NEGF) combined with Density Functional Theory (DFT) calculations have become a standard tool for the description of electron transport through single molecule nano-junctions in the coherent tunneling regime. However, the applicability of these methods for transport in the Coulomb blockade (CB) regime is still under debate. We present here NEGF-DFT calculations performed on simple model systems in the presence of an effective gate potential. The results show that: i) the CB addition energies can be predicted with such an approach with reasonable accuracy; ii) neither the magnitude of the Kohn-Sham gap nor the lack of a derivative discontinuity in the exchange-correlation functional represent a problem for this purpose.
Disciplines :
Chemistry
Physics
Author, co-author :
Stadler, R.
Geskin, V.M.
Cornil, Jérôme ;  Université de Mons > Faculté des Sciences > Chimie des matériaux nouveaux
Language :
English
Title :
Towards a Theoretical Description of Molecular Junctions in the Coulomb Blockade Regime Based on Density Functional Theory
Publication date :
04 September 2008
Journal title :
Physical Review
ISSN :
0031-899X
Publisher :
American Physical Society, Lancaster, Panama
Volume :
78
Issue :
11
Pages :
113402
Peer reviewed :
Peer reviewed
Research unit :
S817 - Chimie des matériaux nouveaux
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Commentary :
Lecture en ligne: http://www.cms.tuwien.ac.at/media/pdf/publications/PRB-78-113402.pdf
Available on ORBi UMONS :
since 10 June 2010

Statistics


Number of views
18 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
25
Scopus citations®
without self-citations
20
OpenCitations
 
20
OpenAlex citations
 
21

Bibliography


Similar publications



Contact ORBi UMONS