Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179-211, 10.1146/annurev-matsci-070909-104532
Yang, Y.; Urban, M. W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446-7467, 10.1039/c3cs60109a
Yuan, Y. C.; Yin, T.; Rong, M. Z.; Zhang, M. Q. Self healing in Polymers and Polymer Composites. Concepts, Realization and Outlook: A Review. eXPRESS Polym. Lett. 2008, 2, 238-250, 10.3144/expresspolymlett.2008.29
Binder, W. H. Self-Healing Polymers: From Principles to Applications; WILEY-VCH: Weinheim, 2013.
Wu, D. Y.; Meure, S.; Solomon, D. Self-Healing Polymeric Materials: A Review of Recent Developments. Prog. Polym. Sci. 2008, 33, 479-522, 10.1016/j.progpolymsci.2008.02.001
White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic Healing of Polymer Composites. Nature 2001, 409, 794-797, 10.1038/35057232
Keller, M. W.; White, S. R.; Sottos, N. R. A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater. 2007, 17, 2399-2404, 10.1002/adfm.200700086
Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. Self-Healing Materials with Microvascular Networks. Nat. Mater. 2007, 6, 581, 10.1038/nmat1934
Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-Healing and Thermoreversible Rubber from Supramolecular Assembly. Nature 2008, 451, 977, 10.1038/nature06669
Tee, B. C.-K.; Wang, C.; Allen, R.; Bao, Z. An Electrically and Mechanically Self-Healing Composite with Pressure-and Flexion-Sensitive Properties for Electronic Skin Applications. Nat. Nano 2012, 7, 825-832, 10.1038/nnano.2012.192
Jeon, J.; Lee, H.-B.-R.; Bao, Z. Flexible Wireless Temperature Sensors Based on Ni Microparticle-Filled Binary Polymer Composites. Adv. Mater. 2013, 25, 850-855, 10.1002/adma.201204082
Chen, Y.; Guan, Z. Multivalent Hydrogen Bonding Block Copolymers Self-Assemble into Strong and Tough Self-Healing Materials. Chem. Commun. 2014, 50, 10868-10870, 10.1039/c4cc03168g
Weng, W.; Beck, J. B.; Jamieson, A. M.; Rowan, S. J. Understanding the Mechanism of Gelation and Stimuli-Responsive Nature of a Class of Metallo-Supramolecular Gels. J. Am. Chem. Soc. 2006, 128, 11663-11672, 10.1021/ja063408q
Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically Healable Supramolecular Polymers. Nature 2011, 472, 334, 10.1038/nature09963
Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. PH-Induced Metal-Ligand Cross-Links Inspired by Mussel Yield Self-Healing Polymer Networks with near-Covalent Elastic Moduli. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 2651-2655, 10.1073/pnas.1015862108
Lai, J.-C.; Li, L.; Wang, D.-P.; Zhang, M.-H.; Mo, S.-R.; Wang, X.; Zeng, K.-Y.; Li, C.-H.; Jiang, Q.; You, X.-Z.; Zuo, J.-L. A Rigid and Healable Polymer Cross-Linked by Weak but Abundant Zn(II)-Carboxylate Interactions. Nat. Commun. 2018, 9, 2725, 10.1038/s41467-018-05285-3
Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-Healing Multiphase Polymers via Dynamic Metal-Ligand Interactions. J. Am. Chem. Soc. 2014, 136, 16128-16131, 10.1021/ja5097094
Han, Y.; Wu, X.; Zhang, X.; Lu, C. Self-Healing, Highly Sensitive Electronic Sensors Enabled by Metal-Ligand Coordination and Hierarchical Structure Design. ACS Appl. Mater. Interfaces 2017, 9, 20106-20114, 10.1021/acsami.7b05204
Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nat. Mater. 2013, 12, 932, 10.1038/nmat3713
Bose, R. K.; Hohlbein, N.; Garcia, S. J.; Schmidt, A. M.; van der Zwaag, S. Relationship between the Network Dynamics, Supramolecular Relaxation Time and Healing Kinetics of Cobalt Poly(Butyl Acrylate) Ionomers. Polymer 2015, 69, 228-232, 10.1016/j.polymer.2015.03.049
Bose, R. K.; Hohlbein, N.; Garcia, S. J.; Schmidt, A. M.; van der Zwaag, S. Connecting Supramolecular Bond Lifetime and Network Mobility for Scratch Healing in Poly(Butyl Acrylate) Ionomers Containing Sodium, Zinc and Cobalt. Phys. Chem. Chem. Phys. 2015, 17, 1697-1704, 10.1039/c4cp04015e
Burattini, S.; Colquhoun, H. M.; Fox, J. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J. F.; Hayes, W.; Mackay, M. E.; Rowan, S. J. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor ?-πstacking interactions. Chem. Commun. 2009, 44, 6717-6719, 10.1039/b910648k
Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J. A Healable Supramolecular Polymer Blend Based on Aromatic ?-πStacking and Hydrogen-Bonding Interactions. J. Am. Chem. Soc. 2010, 132, 12051-12058, 10.1021/ja104446r
Burattini, S.; Greenland, B. W.; Hayes, W.; Mackay, M. E.; Rowan, S. J.; Colquhoun, H. M. A Supramolecular Polymer Based on Tweezer-Type ?-πStacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chem. Mater. 2011, 23, 6-8, 10.1021/cm102963k
Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromolecules 2011, 44, 2536-2541, 10.1021/ma2001492
Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Self-Healing Polymer Films Based on Thiol-Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules 2012, 45, 142-149, 10.1021/ma2015134
Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Room-Temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters. Macromolecules 2015, 48, 2098-2106, 10.1021/acs.macromol.5b00210
Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds. J. Am. Chem. Soc. 2015, 137, 6492-6495, 10.1021/jacs.5b03551
Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S. Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic PH. ACS Macro Lett. 2015, 4, 220-224, 10.1021/acsmacrolett.5b00018
Lai, J.-C.; Mei, J.-F.; Jia, X.-Y.; Li, C.-H.; You, X.-Z.; Bao, Z. A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Adv. Mater. 2016, 28, 8277-8282, 10.1002/adma.201602332
Delpierre, S.; Willocq, B.; De Winter, J.; Dubois, P.; Gerbaux, P.; Raquez, J.-M. Dynamic Iminoboronate-Based Boroxine Chemistry for the Design of Ambient Humidity-Sensitive Self-Healing Polymers. Chem.-Eur. J. 2017, 23, 6730-6735, 10.1002/chem.201700333
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat-or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Adv. Mater. 2014, 26, 3938-3942, 10.1002/adma.201400317
Li, H.; Bai, J.; Shi, Z.; Yin, J. Environmental Friendly Polymers Based on Schiff-Base Reaction with Self-Healing, Remolding and Degradable Ability. Polymer 2016, 85, 106-113, 10.1016/j.polymer.2016.01.050
Chao, A.; Negulescu, I.; Zhang, D. Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules 2016, 49, 6277-6284, 10.1021/acs.macromol.6b01443
Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally Re-Mendable Cross-Linked Polymeric Material. Science 2002, 295, 1698-1702, 10.1126/science.1065879
Willocq, B.; Khelifa, F.; Brancart, J.; Van Assche, G.; Dubois, P.; Raquez, J.-M. One-component Diels-Alder based polyurethanes: a unique way to self-heal. RSC Adv. 2017, 7, 48047-48053, 10.1039/c7ra09898g
Bai, N.; Saito, K.; Simon, G. P. Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 2013, 4, 724-730, 10.1039/c2py20611k
Chattopadhyay, D. K.; Raju, K. V. S. N. Structural Engineering of Polyurethane Coatings for High Performance Applications. Prog. Polym. Sci. 2007, 32, 352-418, 10.1016/j.progpolymsci.2006.05.003
Shaw, M. T.; MacKnight, W. J. Introduction to Polymer Viscoelasticity; Wiley InterScience: Hoboken, 2005.
Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines-New high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 2007, 32, 1344-1391, 10.1016/j.progpolymsci.2007.07.002
Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in Study of Non-Isocyanate Polyurethane. Ind. Eng. Chem. Res. 2011, 50, 6517-6527, 10.1021/ie101995j
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc. 2015, 137, 14019-14022, 10.1021/jacs.5b08084
Dolci, E.; Froidevaux, V.; Michaud, G.; Simon, F.; Auvergne, R.; Fouquay, S.; Caillol, S. Thermoresponsive Crosslinked Isocyanate-Free Polyurethanes by Diels-Alder Polymerization. J. Appl. Polym. Sci. 2016, 134. 10.1002/app.44408
Chen, X.; Li, L.; Jin, K.; Torkelson, J. M. Reprocessable Polyhydroxyurethane Networks Exhibiting Full Property Recovery and Concurrent Associative and Dissociative Dynamic Chemistry via Transcarbamoylation and Reversible Cyclic Carbonate Aminolysis. Polym. Chem. 2017, 8, 6349-6355, 10.1039/c7py01160a
Matsukizono, H.; Endo, T. Reworkable Polyhydroxyurethane Films with Reversible Acetal Networks Obtained from Multifunctional Six-Membered Cyclic Carbonates. J. Am. Chem. Soc. 2018, 140, 884-887, 10.1021/jacs.7b11824
Besse, V.; Camara, F.; Méchin, F.; Fleury, E.; Caillol, S.; Pascault, J.-P.; Boutevin, B. How to Explain Low Molar Masses in PolyHydroxyUrethanes (PHUs). Eur. Polym. J. 2015, 71, 1-11, 10.1016/j.eurpolymj.2015.07.020
Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. L. An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties. J. Am. Chem. Soc. 1997, 119, 12669-12670, 10.1021/ja9719135
Fowler, P. W.; Steiner, E. Ring Currents and Aromaticity of Monocyclic ?-Electron Systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5-, C7H7+, C3N3F3, C6H3F3, and C6F6. J. Phys. Chem. A 1997, 101, 1409-1413, 10.1021/jp9637946
Pierrefixe, S. C. A. H.; Bickelhaupt, F. M. Aromaticity in Heterocyclic and Inorganic Benzene Analogues. Aust. J. Chem. 2008, 61, 209-215, 10.1071/ch08043
Tokunaga, Y.; Ueno, H.; Shimomura, Y.; Seo, T. Formation of Boroxine: Its Stability and Thermodynamic Parameters in Solution. Heterocycles 2002, 57, 787-790, 10.3987/com-02-9464
Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. F.; Cordeiro, C.; Gois, P. M. P. Iminoboronates: A New Strategy for Reversible Protein Modification. J. Am. Chem. Soc. 2012, 134, 10299-10305, 10.1021/ja303436y
Bandyopadhyay, A.; Gao, J. Iminoboronate-Based Peptide Cyclization That Responds to PH, Oxidation, and Small Molecule Modulators. J. Am. Chem. Soc. 2016, 138, 2098-2101, 10.1021/jacs.5b12301
Kua, J.; Iovine Formation of Para-Substituted Triphenylboroxines: A Computational Study. J. Phys. Chem. A 2005, 109, 8938-8943, 10.1021/jp053525s
Kua, J.; Fletcher, M. N.; Iovine, P. M. Effect of Para-Substituents and Solvent Polarity on the Formation of Triphenylboroxine·Amine Adducts. J. Phys. Chem. A 2006, 110, 8158-8166, 10.1021/jp062055e
Norrild, J. C.; Søtofte, I. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensorsThis work was supported by the Danish National Technical Research Council (grant 9900690). J. Chem. Soc., Perkin Trans. 2 2002, 303-311, 10.1039/b107457a
Bao, C.; Jiang, Y. J.; Zhang, H.; Lu, X.; Sun, J. Room-Temperature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Adv. Funct. Mater. 2018, 28, 1-10, 10.1002/adfm.201800560
Iovine, P. M.; Gyselbrecht, C. R.; Perttu, E. K.; Klick, C.; Neuwelt, A.; Loera, J.; DiPasquale, A. G.; Rheingold, A. L.; Kua, J. Hetero-Arylboroxines: The First Rational Synthesis, X-Ray Crystallographic and Computational Analysis. Dalton Trans. 2008, 29, 3791-3794, 10.1039/b804705g
Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)S. Chem. Rev. 2015, 115, 12407-12439, 10.1021/acs.chemrev.5b00355
Anitha, S.; Vijayalakshmi, K. P.; Unnikrishnan, G.; Kumar, K. S. S. CO2 Derived Hydrogen Bonding Spacer: Enhanced Toughness, Transparency, Elongation and Non-Covalent Interactions in Epoxy-Hydroxyurethane Networks. J. Mater. Chem. A 2017, 5, 24299-24313, 10.1039/c7ta08243f
Korich, A. L.; Iovine, P. M. Boroxine Chemistry and Applications: A Perspective. Dalton Trans. 2010, 39, 1423-1431, 10.1039/b917043j
Hutin, M.; Bernardinelli, G.; Nitschke, J. R. An Iminoboronate Construction Set for Subcomponent Self-Assembly. Chem.-Eur. J. 2008, 14, 4585-4593, 10.1002/chem.200800074
Ciaccia, M.; Cacciapaglia, R.; Mencarelli, P.; Mandolini, L.; Di Stefano, S. Fast Transimination in Organic Solvents in the Absence of Proton and Metal Catalysts. A Key to Imine Metathesis Catalyzed by Primary Amines under Mild Conditions. Chem. Sci. 2013, 4, 2253-2261, 10.1039/c3sc50277e
Ogden, W. A.; Guan, Z. Recyclable, Strong, and Highly Malleable Thermosets Based on Boroxine Networks. J. Am. Chem. Soc. 2018, 140, 6217-6220, 10.1021/jacs.8b03257
Wu, J.; Cai, L.-H.; Weitz, D. A. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Adv. Mater. 2017, 29, 1702616
Dahlke, J.; Zechel, S.; Hager, M. D.; Schubert, U. S. How to Design a Self-Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Adv. Mater. Interfaces 2018, 5, 1800051, 10.1002/admi.201800051
Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451-2457, 10.1002/adfm.201404553
Denissen, W.; Droesbeke, M.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Chemical Control of the Viscoelastic Properties of Vinylogous Urethane Vitrimers. Nat. Commun. 2017, 8, 14857, 10.1038/ncomms14857
Zhang, L.; Bu, X. Y.; Gong, Y. J. Mould Design of Self-Healing Composite Gear. Appl. Mech. Mater. 2010, 44-47, 2239-2243, 10.4028/www.scientific.net/amm.44-47.2239