Ahmed, J., Varshney, S.K., Auras, R., Hwang, S.W., Thermal and rheological properties of L‐polylactide/polyethylene glycol/silicate nanocomposites films. Journal of Food Science 75:8 (2010), N97–N108.
Araki, T., Tanaka, H., Wetting-induced depletion interaction between particles in a phase-separating liquid mixture. Physical Review E, 73(6), 2006, 061506.
Azizi Samir, M.A.S., Alloin, F., Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:2 (2005), 612–626.
Balazs, A.C., Emrick, T., Russell, T.P., Nanoparticle polymer composites: Where two small worlds meet. Science 314:5802 (2006), 1107–1110.
Ben Azouz, K., Ramires, E.C., Van den Fonteyne, W., El Kissi, N., Dufresne, A., Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters 1:1 (2011), 236–240.
Bondeson, D., Oksman, K., Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Composite Interfaces 14:7-9 (2007), 617–630.
Bondeson, D., Oksman, K., Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites Part A: Applied Science and Manufacturing 38:12 (2007), 2486–2492.
Cheng, D., Wen, Y., Wang, L., An, X., Zhu, X., Ni, Y., Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydrate Polymers 123 (2015), 157–163.
Cho, S.Y., Park, H.H., Yun, Y.S., Jin, H.-J., Influence of cellulose nanofibers on the morphology and physical properties of poly (lactic acid) foaming by supercritical carbon dioxide. Macromolecular Research 21:5 (2013), 529–533.
Ding, W., Kuboki, T., Wong, A., Park, C.B., Sain, M., Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Advances 5:111 (2015), 91544–91557.
Frone, A., Berlioz, S., Chailan, J.F., Panaitescu, D., Donescu, D., Cellulose fiber‐reinforced polylactic acid. Polymer Composites 32:6 (2011), 976–985.
Gabriel, C., Munstedt, H., Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheologica Acta 41:3 (2002), 232–244.
Gupta, A., Simmons, W., Schueneman, G.T., Hylton, D., Mintz, E.A., Rheological and thermo-mechanical properties of poly (lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustainable Chemistry & Engineering 5:2 (2017), 1711–1720.
Hakim, R., Cailloux, J., Santana, O., Bou, J., Sánchez‐Soto, M., Odent, J., Maspoch, M.L., PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science 134:40 (2017), 45367–45372.
Hassouna, F., Raquez, J.-M., Addiego, F., Dubois, P., Toniazzo, V., Ruch, D., New approach on the development of plasticized polylactide (PLA): Grafting of poly (ethylene glycol)(PEG) via reactive extrusion. European Polymer Journal 47:11 (2011), 2134–2144.
Henriksson, M., Henriksson, G., Berglund, L., Lindström, T., An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43:8 (2007), 3434–3441.
Honerkamp, J., Weese, J., A nonlinear regularization method for the calculation of relaxation spectra. Rheologica Acta 32:1 (1993), 65–73.
Iwatake, A., Nogi, M., Yano, H., Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology 68:9 (2008), 2103–2106.
Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K., Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology 70:12 (2010), 1742–1747.
Kakroodi, A.R., Cheng, S., Sain, M., Asiri, A., Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. Journal of Nanomaterials, 2014, 2014, 139.
Kaushik, A., Singh, M., Verma, G., Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers 82:2 (2010), 337–345.
Kiziltas, A., Nazari, B., Kiziltas, E.E., Gardner, D.J., Han, Y., Rushing, T.S., Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers 140 (2016), 393–399.
Kondo, T., Sawatari, C., Intermolecular hydrogen bonding in cellulose/poly (ethylene oxide) blends: Thermodynamic examination using 2, 3-di-O-and 6-O-methylcelluloses as cellulose model compounds. Polymer 35:20 (1994), 4423–4428.
Kose, R., Kondo, T., Size effects of cellulose nanofibers for enhancing the crystallization of poly (lactic acid). Journal of Applied Polymer Science 128:2 (2013), 1200–1205.
Kowalczyk, M., Piorkowska, E., Kulpinski, P., Pracella, M., Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing 42:10 (2011), 1509–1514.
Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42:4 (2011), 856–873.
Li, F.J., Zhang, S.D., Liang, J.Z., Wang, J.Z., Effect of polyethylene glycol on the crystallization and impact properties of polylactide‐based blends. Polymers for Advanced Technologies 26:5 (2015), 465–475.
Ling, S., Kaplan, D.L., Buehler, M.J., Nanofibrils in nature and materials engineering. Nature Reviews Materials, 3, 2018, 18016.
Lo Re, G., Engstrom, J., Wu, Q., Malmström, E., Gedde, U.W., Olsson, R.T., Berglund, L.A., Improved cellulose nanofibril dispersion in melt-processed polycaprolactone nanocomposites by a latex-mediated interphase and wet feeding as LDPE alternative. ACS Applied Nano Materials 1:6 (2018), 2669–2677.
Lo Re, G., Sessini, V., Wet feeding approach for cellulosic materials/PCL biocomposites. Ayoub, A., Lucia, L., (eds.) Biomass extrusion and reaction technologies: Principles to practices and future potential, 2018, 209–226.
Lu, Y., Huang, J., Ge, L., Xie, W., Wu, D., Selective localization of cellulose nanocrystals in the biodegradable poly (vinyl alcohol)/poly (ε-caprolactone) blend composites prepared by Pickering emulsions. Polymer 156 (2018), 136–147.
Ludueña, L.N., Fortunati, E., Morán, J.I., Alvarez, V.A., Cyras, V.P., Puglia, D., Pracella, M., Preparation and characterization of polybutylene‐succinate/poly (ethylene‐glycol)/cellulose nanocrystals ternary composites. Journal of Applied Polymer Science 133:15 (2016), 43302–43311.
Martínez-Sanz, M., Lopez-Rubio, A., Lagaron, J.M., Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 13:11 (2012), 3887–3899.
Mathew, A.P., Oksman, K., Sain, M., Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science 97:5 (2005), 2014–2025.
Nie, S., Zhang, K., Lin, X., Zhang, C., Yan, D., Liang, H., Wang, S., Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydrate Polymers 181 (2018), 1136–1142.
Oksman, K., Aitomäki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Hooshmand, S., Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing 83 (2016), 2–18.
Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I., Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology 66:15 (2006), 2776–2784.
Ozdemir, E., Hacaloglu, J., Characterizations of PLA-PEG blends involving organically modified montmorillonite. Journal of Analytical and Applied Pyrolysis 127 (2017), 343–349.
Peng, Y., Gardner, D.J., Han, Y., Drying cellulose nanofibrils: In search of a suitable method. Cellulose 19:1 (2012), 91–102.
Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R.D., Lowry, G.V., Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research 10:5 (2008), 795–814.
Raquez, J.-M., Murena, Y., Goffin, A.-L., Habibi, Y., Ruelle, B., DeBuyl, F., Dubois, P., Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Composites Science and Technology 72:5 (2012), 544–549.
Safdari, F., Bagheriasl, D., Carreau, P.J., Heuzey, M.C., Kamal, M.R., Rheological, mechanical, and thermal properties of polylactide/cellulose nanofiber biocomposites. Polymer Composites 39:5 (2018), 1752–1762.
Saïd Azizi Samir, M.A., Alloin, F., Paillet, M., Dufresne, A., Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:11 (2004), 4313–4316.
Sakakibara, K., Moriki, Y., Yano, H., Tsujii, Y., Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants. ACS Applied Materials & Interfaces 9:50 (2017), 44079–44087.
Sakakibara, K., Yano, H., Tsujii, Y., Surface engineering of cellulose nanofiber by adsorption of diblock copolymer dispersant for green nanocomposite materials. ACS Applied Materials & Interfaces 8:37 (2016), 24893–24900.
Scaffaro, R., Maio, A., Re, G.L., Parisi, A., Busacca, A., Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Composites Science and Technology 156 (2018), 166–176.
Si, M., Araki, T., Ade, H., Kilcoyne, A., Fisher, R., Sokolov, J.C., Rafailovich, M.H., Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39:14 (2006), 4793–4801.
Soeta, H., Lo Re, G., Masuda, A., Fujisawa, S., Saito, T., Berglund, L.A., Isogai, A., Tailoring nanocellulose–Cellulose triacetate interfaces by varying the surface grafting density of poly (ethylene glycol). ACS Omega 3:9 (2018), 11883–11889.
Stokes, J., Telford, J., Measuring the yield behaviour of structured fluids. Journal of Non-Newtonian Fluid Mechanics 124:1-3 (2004), 137–146.
Suryanegara, L., Nakagaito, A.N., Yano, H., The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69:7-8 (2009), 1187–1192.
Tabi, T., Sajó, I., Szabó, F., Luyt, A., Kovács, J., Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters 4:10 (2010), 659–668.
Wang, B., Hina, K., Zou, H., Zuo, D., Yi, C., Thermal, crystallization, mechanical and decomposition properties of poly (lactic acid) plasticized with poly (ethylene glycol). Journal of Vinyl and Additive Technology 24 (2018), E154–E163.
Xiao, L., Mai, Y., He, F., Yu, L., Zhang, L., Tang, H., Yang, G., Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose. Journal of Materials Chemistry 22:31 (2012), 15732–15739.
Yang, Z., Li, X., Si, J., Cui, Z., Peng, K., Morphological, mechanical and thermal properties of poly (lactic acid)(PLA)/cellulose nanofibrils (CNF) composites nanofiber for tissue engineering. Journal of Wuhan University of Technology-Mater. Sci. Ed. 34:1 (2019), 207–215.
Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., Guo, W., Plasticizing effect of poly (ethylene glycol) s with different molecular weights in poly (lactic acid)/starch blends. Journal of Applied Polymer Science 132:16 (2015), 41808–41817.
Zhang, P., Gao, D., Zou, P., Wang, B., Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly (lactic acid) nanocomposites. Journal of Applied Polymer Science 134:14 (2017), 44683–44692.
Zimmermann, T., Pöhler, E., Geiger, T., Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials 6:9 (2004), 754–761.