[en] An oligo(p-phenylenevinylene) (OPV)-substituted hexaarylbenzene has been synthesized and fully characterized. Recycling gel permeation chromatography appeared to be a powerful technique to obtain the OPV molecules in a very pure form. X-ray analysis and polarization optical microscopy revealed that the OPV molecule is plastic crystalline at room temperature with an ordered columnar superstructure. In apolar solvents, the molecules self-assemble via a highly cooperative fashion into right-handed chiral superstructures, which are stable even at high temperatures and low concentration. Atomic force microscopy revealed right-handed fibers with a diameter of 6 nm, indicating p-stacked aggregates; on a silicon oxide substrate, supercoiled chiral structures were observed. STM studies on a liquid-solid interface showed that the star-shaped OPV molecule forms an organized monolayer having a chiral hexagonal lattice.
Disciplines :
Chemistry Physics
Author, co-author :
Tomovic, Z.
van Dongen, J.
George, S.J.
Xu, H.-L.
Pisula, W.
Leclère, Philippe ; Université de Mons > Faculté des Sciences > Chimie des matériaux nouveaux
Smulders, M.M.J.
De Feyter, S.
Meijer, E.W.
Schenning, A.P.H.J.
Language :
English
Title :
Star-Shaped Oligo(p-phenylenevinylene) Substituted Hexaarylbenzene: Purity, Stability, and Chiral Self-Assembly
Publication date :
26 December 2007
Journal title :
Journal of the American Chemical Society
ISSN :
0002-7863
eISSN :
1520-5126
Publisher :
American Chemical Society, United States - District of Columbia
Volume :
129
Issue :
51
Pages :
16190-16196
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S817 - Chimie des matériaux nouveaux
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
(c) Xiao, S.; Tang, J.; Beetz, T.; Guo, X.; Tremblay, N.; Siegrist, T.; Zhu, Y.; Steigerwald, M.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 10700-10701.
(d) Shklyarevskiy, I. O.; Jonkheijm, P.; Stutzmann, N.; Wasserberg, D.; Wondergem, H. J.; Christianen, P. C. M.; Schenning, A. P. H. J.; de Leeuw, D. M.; Tomovic, Z.; Wu, J.; Müllen, K.; Maan, J. C. J. Am. Chem. Soc. 2005, 127, 16233-16237.
(e) Jonkheijm, P.; Stutzmann, N.; Chen, Z.; de Leeuw, D. M.; Meijer, E. W.; Schenning, A. P. H. J.; Würthner, F. J. Am. Chem. Soc. 2006, 128, 9535-9540.
For examples on polymers, see: (a) Merlo, J. A.; Frisbie, C. D. J. Poly. Sci. B 2003, 41, 2674-2680.
(b) Mas-Torrent, M.; den Boer, D.; Durkut, M.; Hadley, P.; Schenning, A. P. H. J. Nanotechnology 2004, 15, S265-S269.
For a special issue on carbon nanotubes, see: Acc. Chem. Res. 2002, 36, Issue 12.
For a review on inorganic wires, see: Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y., Kim, F.; Yan. H. Adv. Mater. 2003, 15, 353-389.
(a) Ajayaghosh, A.; George, S, J.; Schenning, A. P. H. J. Top. Curr. Chem. 2005, 258, 83-118.
(b) Schenning, A. P. H. J., et al. Synth. Met. 2004, 147, 43-48.
van Herrikhuyzen, J.; Jonkheijm, P.; Schenning A. P. H. J.; Meijer, E. W. Org. Biomol. Chem. 2006, 4, 1539-1545.
For recent reviews on two and three-dimensional organic semiconductors, see: (a) Roncali, J.; Leriche, P.; Cravino, A. Adv. Mater. 2007, 19, 2045-2060.
(b) Opsitnick, E.; Lee, D. Chem. Eur. J. 2007, 13, 7040-7049.
For example, see: (a) Geng, Y.; Fechenkotter, A.; Müllen, K. J. Mater. Chem. 2001, 11, 1634-1641.
(b) Wu, J.; Watson, M. D.; Zhang, L.; Wang, Z. Müllen, K. J. Am. Chem. Soc. 2004, 126, 177-186.
(c) Takase, M.; Ismael, R.; Murakami, R.; Ikeda, M.; Kim, D.; Shinmori, H.; Furata, H.; Osuka, A. Tetrahedron Lett. 2002, 43, 5157-5159.
(d) Cho, H. S.; Rhee, H.; Song, J. K., Min, C.-K.; Takase, M. Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. J. Am. Chem. Soc. 2003, 125, 5849-5860.
(e) Lidell, P. A.; Kodis, G.; de la Garza, L.; Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. B 2004, 108, 10256-10265.
(f) Biemans, H. A. M.; Rowan, A. E.; Verhoeven, A., Vanoppen, P.; Latterini, L.; Foekema, J.; Schenning, A. P. H. J.; Meijer, E. W.; de Schrijver, F. C.; Nolte, R. J. M. J. Am. Chem. Soc. 1998, 120, 11054-11060.
(g) Fiqueira-Duarte, T. M.; Clifford, J.; Amandalo, V.; Gégout, A.; Olivier, J.; Cardinali, F.; Meneghetti, M.; Armaroli, N.; Nierengarten, J.-F. Chem. Comm. 2006, 2054-2056.
(h) Rausch, D.; Lambert, C. Org. Lett. 2006, 8, 5037-5040.
(i) Chebny, V. J.; Dhar, D.; Lindeman, S. V.; Rathore, R. Org. Lett. 2006, 8, 5041-5044.
(j) Keegstra, M. A.; De Feyter, S.; De Schryver, F. C.; Müllen, K. Angew. Chem., Int. Ed. 1996, 35, 774-776.
(k) Hasegawa, M.; Enozawa, H.; Kawabata, Y.; Iyoda, M. J. Am. Chem. Soc. 2007, 129, 3072-3073.
Pisula, W.; Dierschke, F.; Müllen, K. J. Mater. Chem. 2006, 16, 4058-4064.
Pisula, W.; Tomović, Ž.; Simpson, C.; Kastler, M.; Pakula, T.; Müllen, K. Chem. Mater. 2005, 17, 4296-4303.
Pisula, W.; Kastler, M.; Wasserfallen, D.; Mondeshki, M.; Piris, J.; Schnell, I.; Müllen, K. Chem. Mater. 2006, 18, 3634-3640.
Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; De Feyter, S.; Schenning, A. P. H. J.; De Schryver, F. C.; Meijer, E. W. Angew. Chem., Int. Ed. 2004, 43, 74-78.
(a) Jonkheijm, P.; Schoot, V. D. P.; Schenning, A. P. H. J.: Meijer, E. W. Science 2006, 313, 80-83.
(b) Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc., accepted.
Leclère, Ph.; Surin, M.; Lazzaroni, R. Kilbinger, A. F. M.; Henze, O.; Jonkheijm, P.; Biscarini, F.; Cavallini, M. Feast, W. J.; Meijer, E. W.; Schenning, A. P. H. J. J. Mater. Chem. 2004, 14, 1959-1963.
Rabe, J. P.; Buchholz, S. Science 1991, 253, 424-427.
De Feyter, S.; De Schryver, F. C. J. Phys. Chem. B 2005, 109, 4290-4302.
Lazzaroni, R.; Calderone, A.; Brédas, J. L.; Rabe, J. P. J. Chem. Phys. 1997, 107, 99-105.
Cyr, D. M.; Venkataraman, B.; Flynn, G. W. Chem. Mater. 1996, 8, 1600-1615.
Perez-Garcia, L.; Amabilino, D. B. Chem. Soc. Rev. 2002, 31, 342-356.
Barlow, S. M.; Raval, R. Surf. Sci. Rep. 2003, 50, 201-341.
Humblot, V.; Barlow, S. M.; Raval, R. Prog. Surf. Sci. 2004, 76, 1-19.
Schöck, M.; Otero, R.; Stojkovic, S.; Hümmelink, F.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. J. Phys. Chem. B 2006, 110, 12835-12838.
In reality, the crystallographic plane point group of the molecule is "6" (just a hexad) because of the chiral substituents.
De Feyer, S.; De Schryver, F. In Scanning Probe Microscopy beyond Imaging; Samorí, P., Ed.; Wiley-VCH: New York, 2006, 3-36.
Miura, A.; Jonkheijm, P.; De Feyter, S.; Schenning, A. P. H. J.; Meijer, E. W.; De Schryver, F. C. Small 2005, 1, 131-137.