Banik, S. D.; Nandi, N. Chirality and Protein Biosynthesis. In Topics in Current Chemistry;, 2012; Vol. 333, pp 255-305. 10.1007/128_2012_369
Nguyen, L. A.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int. J. Biomed. Sci. 2006, 2, 85-100
Shen, Q.; Wang, L.; Zhou, H.; Jiang, H.-d.; Yu, L.-s.; Zeng, S. Stereoselective Binding of Chiral Drugs to Plasma Proteins. Acta Pharmacol. Sin. 2013, 34, 998-1006, 10.1038/aps.2013.78
Kellogg, R. M.; Nieuwenhuijzen, J. W.; Pouwer, K.; Vries, T. R.; Broxterman, Q. B.; Grimbergen, R. F. P.; Kaptein, B.; Crois, R. M.; de Wever, E.; Zwaagstra, K.; van der Laan, A. C. Dutch Resolution: Separationof Enantiomers with Families of Resolving Agents. A Status Report. Synthesis 2003, 10, 1626-1638, 10.1055/s-2003-40508
Mohr, J. T.; Krout, M. R.; Stoltz, B. M. Natural Products as Inspiration for the Development of Asymmetric Catalysis. Nature 2008, 455, 323-332, 10.1038/nature07370
Ricci, A. Asymmetric Organocatalysis at the Service of Medicinal Chemistry. ISRN Org. Chem. 2014, 2014, 1-29, 10.1155/2014/531695
Gogoi, A.; Mazumder, N.; Konwer, S.; Ranawat, H.; Chen, N. T.; Zhuo, G. Y. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019, 24, 1007, 10.3390/molecules24061007
Francotte, E. R. Enantioselective Chromatography as a Powerful Alternative for the Preparation of Drug Enantiomers. J. Chromatogr. A 2001, 906, 379-397, 10.1016/s0021-9673(00)00951-1
Xiao, Y.; Ng, S.-C.; Tan, T. T. Y.; Wang, Y. Recent Development of Cyclodextrin Chiral Stationary Phases and Their Applications in Chromatography. J. Chromatogr. A 2012, 1269, 52-68, 10.1016/j.chroma.2012.08.049
Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J. 2006, 38, 91-108, 10.1295/polymj.38.91
Haginaka, J. Protein-Based Chiral Stationary Phases for High-Performance Liquid Chromatography Enantioseparations. J. Chromatogr. A 2001, 906, 253-273, 10.1016/s0021-9673(00)00504-5
Huang, J.; Chen, H.; Li, T. Improvement of Proline Chiral Stationary Phases by Varying Peptide Length and Linker. J. Chromatogr. A 2006, 1113, 109-115, 10.1016/j.chroma.2006.01.128
Ohyama, K.; Oyamada, K.; Kishikawa, N.; Arakawa, M.; Ohba, Y.; Kamino, M.; Wada, M.; Nakashima, K.; Kuroda, N. Investigation of Novel Peptide Chiral Selectors Prepared by Solid-Phase Synthesis with a Tert-Butoxycarbonyl Amino Acid. Chromatographia 2009, 70, 1501-1504, 10.1365/s10337-009-1345-z
Ohyama, K.; Oyamada, K.; Kishikawa, N.; Ohba, Y.; Wada, M.; Maki, T.; Nakashima, K.; Kuroda, N. Preparation and Characterization of Poly(l-Phenylalanine) Chiral Stationary Phases with Varying Peptide Length. J. Chromatogr. A 2008, 1208, 242-245, 10.1016/j.chroma.2008.08.121
Ohyama, K.; Oyamada, K.; Kishikawa, N.; Wada, M.; Ohba, Y.; Nakashima, K.; Kuroda, N. Effects of Temperature and Mobile Phase Condition on Chiral Recognition of Poly(l-Phenylalanine) Chiral Stationary Phase. Chromatographia 2011, 74, 467-470, 10.1007/s10337-011-2092-5
Wu, H.; Liang, T.; Yin, C.; Jin, Y.; Ke, Y.; Liang, X. Enantiorecognition ability of peptoids with α-chiral, aromatic side chains. Analyst 2011, 136, 4409, 10.1039/c1an15485k
Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.; Zuckermann, R. N. Sequence-Specific Polypeptoids: A Diverse Family of Heteropolymers with Stable Secondary Structure. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303-4308, 10.1073/pnas.95.8.4303
Fowler, S. A.; Blackwell, H. E. Structure-Function Relationships in Peptoids: Recent Advances toward Deciphering the Structural Requirements for Biological Function. Org. Biomol. Chem. 2009, 7, 1508-1524, 10.1039/b817980h
Sun, J.; Li, Z. Peptoid Applications in Biomedicine and Nanotechnology. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Elsevier, 2018, pp 183-213. 10.1016/b978-0-08-100736-5.00007-7
Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B. New Peptidomimetic Polymers for Antifouling Surfaces. J. Am. Chem. Soc. 2005, 127, 7972-7973, 10.1021/ja0522534
Olivier, G. K.; Cho, A.; Sanii, B.; Connolly, M. D.; Tran, H.; Zuckermann, R. N. Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition. ACS Nano 2013, 7, 9276-9286, 10.1021/nn403899y
Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C. K. Peptoids: A Modular Approach to Drug Discovery. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367-9371, 10.1073/pnas.89.20.9367
Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. Comparison of the Proteolytic Susceptibilities of Homologous L-Amino Acid, D-Amino Acid, and N-Substituted Glycine Peptide and Peptoid Oligomers. Drug Dev. Res. 1995, 35, 20-32, 10.1002/ddr.430350105
Wu, H.; Su, X.; Li, K.; Yu, H.; Ke, Y.; Liang, X. Improvement of Peptoid Chiral Stationary Phases by Modifying the Terminal Group of Selector. J. Chromatogr. A 2012, 1265, 181-185, 10.1016/j.chroma.2012.09.081
Wu, H.; Li, K.; Yu, H.; Ke, Y.; Liang, X. Investigation of Peptoid Chiral Stationary Phases Varied in Absolute Configuration. J. Chromatogr. A 2013, 1281, 155-159, 10.1016/j.chroma.2013.01.073
Wu, C. W.; Sanborn, T. J.; Huang, K.; Zuckermann, R. N.; Barron, A. E. Peptoid Oligomers with α-Chiral, Aromatic Side Chains: Sequence Requirements for the Formation of Stable Peptoid Helices. J. Am. Chem. Soc. 2001, 123, 6778-6784, 10.1021/ja003154n
Zhao, C.; Cann, N. M. The Docking of Chiral Epoxides on the Whelk-O1 Stationary Phase: A Molecular Dynamics Study. J. Chromatogr. A 2007, 1149, 197-218, 10.1016/j.chroma.2007.03.073
Zhao, C. F.; Cann, N. M. Molecular Dynamics Study of Chiral Recognition for the Whelk-O1 Chiral Stationary Phase. Anal. Chem. 2008, 80, 2426-2438, 10.1021/ac702126y
Ashtari, M.; Cann, N. M. Poly-Proline-Based Chiral Stationary Phases: A Molecular Dynamics Study of Triproline, Tetraproline, Pentaproline and Hexaproline Interfaces. J. Chromatogr. A 2012, 1265, 70-87, 10.1016/j.chroma.2012.09.075
Peluso, P.; Dessì, A.; Dallocchio, R.; Mamane, V.; Cossu, S. Recent Studies of Docking and Molecular Dynamics Simulation for Liquid-Phase Enantioseparations. Electrophoresis 2019, 40, 1881-1896, 10.1002/elps.201800493
Wang, X.; Jameson, C. J.; Murad, S. Modeling Enantiomeric Separations as an Interfacial Process Using Amylose Tris(3,5-Dimethylphenyl Carbamate) (ADMPC) Polymers Coated on Amorphous Silica. Langmuir 2020, 36, 1113-1124, 10.1021/acs.langmuir.9b03248
Fasman, G. D.; Blout, E. R. Copolymers ofL-proline and sarcosine: Synthesis and physical-chemical studies. Biopolymers 1963, 1, 99-109, 10.1002/bip.360010202
Della Valle, R. G.; Andersen, H. C. Molecular Dynamics Simulation of Silica Liquid and Glass. J. Chem. Phys. 1992, 97, 2682-2689, 10.1063/1.463056
Roscioni, O. M.; Muccioli, L.; Della Valle, R. G.; Pizzirusso, A.; Ricci, M.; Zannoni, C. Predicting the Anchoring of Liquid Crystals at a Solid Surface: 5-Cyanobiphenyl on Cristobalite and Glassy Silica Surfaces of Increasing Roughness. Langmuir 2013, 29, 8950-8958, 10.1021/la400857s
Roscioni, O. M.; Muccioli, L.; Mityashin, A.; Cornil, J.; Zannoni, C. Structural Characterization of Alkylsilane and Fluoroalkylsilane Self-Assembled Monolayers on SiO2 by Molecular Dynamics Simulations. J. Phys. Chem. C 2016, 120, 14652-14662, 10.1021/acs.jpcc.6b03226
Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255-1266, 10.1021/jp0363287
Hoyas, S.; Lemaur, V.; Duez, Q.; Saintmont, F.; Halin, E.; De Winter, J.; Gerbaux, P.; Cornil, J. PEPDROID: Development of a Generic DREIDING-Based Force Field for the Assessment of Peptoid Secondary Structures. Adv. Theory Simul. 2018, 1, 1800089, 10.1002/adts.201800089
Gasteiger, J.; Marsili, M. A New Model for Calculating Atomic Charges in Molecules. Tetrahedron Lett. 1978, 19, 3181-3184, 10.1016/s0040-4039(01)94977-9
Armand, P.; Kirshenbaum, K.; Falicov, A.; Dunbrack, R. L.; Dill, K. A.; Zuckermann, R. N.; Cohen, F. E. Chiral N-Substituted Glycines Can Form Stable Helical Conformations. Folding Des. 1997, 2, 369-375, 10.1016/s1359-0278(97)00051-5
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. CHARMM General Force Field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671-690, 10.1002/jcc.21367
CGenFF interface at paramchem.org. https://cgenff.umaryland.edu/(accessed April 15, 2019).
Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130, 10.1063/5.0014475
Cruz-Chu, E. R.; Aksimentiev, A.; Schulten, K. Water-Silica Force Field for Simulating Nanodevices. J. Phys. Chem. B 2006, 110, 21497-21508, 10.1021/jp063896o
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092, 10.1063/1.464397
Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II; Springer Series in Solid-State Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 1991; Vol. 31.
Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-1802, 10.1002/jcc.20289
Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. J. Chem. Phys. 1995, 103, 4613-4621, 10.1063/1.470648
Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K. Molecular Dynamics Study of Unbinding of the Avidin-Biotin Complex. Biophys. J. 1997, 72, 1568-1581, 10.1016/s0006-3495(97)78804-0
Spencer, R. K.; Butterfoss, G. L.; Edison, J. R.; Eastwood, J. R.; Whitelam, S.; Kirshenbaum, K.; Zuckermann, R. N. Stereochemistry of Polypeptoid Chain Configurations. Biopolymers 2019, 110, e23266 10.1002/bip.23266
Rotter, J. M.; Knickle, H. N. Isobaric Vapor-Liquid Equilibrium Data for the System n-Hexane-2-Propanol. J. Chem. Eng. Data 1977, 22, 246-248, 10.1021/je60074a006
Stubbs, J. M.; Siepmann, J. I. Aggregation in Dilute Solutions of 1-Hexanol inn-Hexane: A Monte Carlo Simulation Study. J. Phys. Chem. B 2002, 106, 3968-3978, 10.1021/jp013759l
Požar, M.; Lovrinčević, B.; Zoranić, L.; Primorać, T.; Sokolić, F.; Perera, A. Micro-Heterogeneity versus Clustering in Binary Mixtures of Ethanol with Water or Alkanes. Phys. Chem. Chem. Phys. 2016, 18, 23971-23979, 10.1039/C6CP04676B
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33-38, 10.1016/0263-7855(96)00018-5
Van Der Spoel, D.; Van Maaren, P. J.; Larsson, P.; Tîmneanu, N. Thermodynamics of Hydrogen Bonding in Hydrophilic and Hydrophobic Media. J. Phys. Chem. B 2006, 110, 4393-4398, 10.1021/jp0572535
Van Der Spoel, D.; Berendsen, H. J. Molecular Dynamics Simulations of Leu-Enkephalin in Water and DMSO. Biophys. J. 1997, 72, 2032-2041, 10.1016/s0006-3495(97)78847-7
Toniolo, C.; Bonora, G. M.; Schilling, F. C.; Bovey, F. A. Proton Magnetic Resonance Study of Linear Sarcosine Oligomers. Macromolecules 1980, 13, 1381-1385, 10.1021/ma60078a010