[en] Novel carbon nanofiber (CNF) -filled bismalemide composites were fabricated by a thermokinetic mixing method. The thermal and mechanical properties of composites containing 1 wt % and 2 wt % CNFs were investigated. Thermogravimetric analysis demonstrated that minimal improvement in thermal stability of the nanocomposites was obtained by the addition of CNFs. Dynamic mechanical analysis showed an increase in storage modulus (E') and glass transition temperature (Tg) upon incorporation of nanofibers. Limiting oxygen index (LOI) has also been found to increase with incorporation of CNFs. Morphological studies of fractured surfaces of the composites has been carried out by scanning electron microscopy to determine the effect of fiber content and dispersion on the failure mechanism. In general, good dispersion was observed, along with agglomeration at some points and some fiber matrix interfacial debonding. A decrease in mechanical strength has been observed and debonding was found as the main failure mechanism. Further research outlook is also presented.
Disciplines :
Chemistry
Author, co-author :
Faraz, M. I.
Bhowmik, S.
De Ruijter, C.
Laoutid, Fouad ; Université de Mons > Unités externes > Materia Nova ASBL
Benedictus, R.
Dubois, Philippe ; Université de Mons > Faculté des Sciences > Matériaux Polymères et Composites
Page, J. V. S.
Jeson, S.
Language :
English
Title :
Thermal, Morphological, and Mechanical Characterization of Novel Carbon Nanofiber-Filled Bismaleimide Composites
Publication date :
15 August 2010
Journal title :
Journal of Applied Polymer Science
ISSN :
0021-8995
eISSN :
1097-4628
Publisher :
John Wiley & Sons, Hoboken, United States - New York
Volume :
117
Issue :
4
Pages :
2159-2167
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S816 - Matériaux Polymères et Composites
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Hackman, I.; Hollaway, L. Proceedings of the International Symposium on Bond Behaviour of FRP in Structures; UK; International Institute for FRP in Construction (IIFC), Hong Kong, China, 2005.
Aravind, D.; Szu-Hui, L.; Zhong-Zhen, Y.; Mai, Y.-W. Aus J Chem 2007, 60, 496.
Li, F.; Cheng, H. M.; Bai, S.; Su, G. Appl Phys Lett 2000,77,3161.
Lu, J. P. J Phys Chem Solids 1997, 58, 1649.
Lau, K.-T.; Hui, D. Compos B 2002, 33, 263.
Zeng, J.; Saltysiak, B.; Johnson, W. S.; Schiraldi, D. A.; Kumar, S. Compos B 2004, 35, 173.
Coopera, C. A.; Ravicha, D.; Lipsb, D.; Mayerb, J.; Wagnera, H. D. Comput Sci Technol 2002, 62, 1105.
Carneiro, S.; Covas, J. A.; Bernardo, C. A.; Caldeira, G.; Van Hattum, F. W. J.; Ting, J.-M.; Alig, R. L.; Lake', M. L. Comput Sci Technol 1998, 58, 401.
Kuriger, R. J.; Alam, M. K.; Anderson, D. P.; Jacobsen, R. L. Compos A 2002, 33, 53.
Sui, G.; Zhong, W. H.; Ren, X.; Wang, X. Q.; Yang, X. P. Mater Chem Phys 2009, 115, 404.
Ghose, S.; Watson, K. A.; Working, D. C.; Siochi, E. J.; Connell, J. W.; Criss, J. M. High Perform Polym 2006, 18, 527.