Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., Riess, H., The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43:1 (2002), 33–56.
Zhang, H.G., Mehta, K., Cohen, P., Guha, C., Hyperthermia on immune regulation: a temperature's story. Cancer Lett. 271:2 (2008), 191–204.
Jaque, D., Maestro, L.M., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Rodriguez, E.M., Sole, J.G., Nanoparticles for photothermal therapies. Nanoscale 6:16 (2014), 9494–9530.
Manns, F., Milne, P.J., Gonzalez-Cirre, X., Denham, D.B., Parel, J.M., Robinson, D.S., In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact. Lasers Surg. Med. 23:2 (1998), 94–103.
Corte, A.C.R.E., Hernandez, A.J., Application of medical infrared thermography to sports medicine. Rev. Bras. Med. Esporte 22:4 (2016), 315–319.
Ebbini, E.S., Simon, C., Liu, D.L., Real-time ultrasound thermography and thermometry. IEEE Signal Proc. Mag. 35:2 (2018), 166–174.
Fuzesi, K., Ilyina, N., Verboven, E., Van Den Abeele, K., Gyongy, M., D'hooge, J., Temperature dependence of speed of sound and attenuation of porcine left ventricular myocardium. Ultrasonics 82 (2018), 246–251.
Winter, L., Oberacker, E., Paul, K., Ji, Y.Y., Oezerdem, C., Ghadjar, P., Thieme, A., Budach, V., Wust, P., Niendorf, T., Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int. J. Hyperthermia 32:1 (2016), 63–75.
Upputuri, P.K., Pramanik, M., Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt., 22(4), 2017.
Pang, G.A., Bay, E., Dean-Ben, X.L., Razansky, D., Three-dimensional optoacoustic monitoring of lesion formation in real time during radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 26:3 (2015), 339–345.
Fehm, T.F., Dean-Ben, X.L., Schaur, P., Sroka, R., Razansky, D., Volumetric optoacoustic imaging feedback during endovenous laser therapy - an ex vivo investigation. J. Biophotonics 9:9 (2016), 934–941.
Li, X.Q., Heldermon, C.D., Yao, L., Xi, L., Jiang, H.B., High resolution functional photoacoustic tomography of breast cancer. Med. Phys. 42:9 (2015), 5321–5328.
Hariri, A., Tavakoli, E., Adabi, S., Gelovani, J., Avanaki, M.R.N., Functional photoacoustic tomography for neonatal brain imaging: developments and challenges. Proc. SPIE, 10064, 2017.
Song, W., Wei, Q., Liu, W.Z., Liu, T., Yi, J., Sheibani, N., Fawzi, A.A., Linsenmeier, R.A., Jiao, S.L., Zhang, H.F., A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci. Rep.-Uk, 4, 2014.
Seeger, M., Karlas, A., Soliman, D., Pelisek, J., Ntziachristos, V., Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4:3 (2016), 102–111.
Martel, C., Yao, J.J., Huang, C.H., Zou, J., Randolph, G.J., Wang, L.V., Photoacoustic lymphatic imaging with high spatial-temporal resolution. J. Biomed. Opt., 19(11), 2014.
He, Y., Wang, L.D., Shi, J.H., Yao, J.J., Li, L., Zhang, R.Y., Huang, C.H., Zou, J., Wang, L.H.V., In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells. Sci. Rep.-Uk, 6, 2016.
Kim, C., Cho, E.C., Chen, J.Y., Song, K.H., Au, L., Favazza, C., Zhang, Q.A., Cobley, C.M., Gao, F., Xia, Y.N., Wang, L.H.V., In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by Bioconjugated Gold Nanocages. ACS Nano 4:8 (2010), 4559–4564.
De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Smith, B.R., Ma, T.J., Oralkan, O., Cheng, Z., Chen, X.Y., Dai, H.J., Khuri-Yakub, B.T., Gambhir, S.S., Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3:9 (2008), 557–562.
Nie, L.M., Chen, X.Y., Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 43:20 (2014), 7132–7170.
Mallidi, S., Larson, T., Tam, J., Joshi, P.P., Karpiouk, A., Sokolov, K., Emelianov, S., Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer. Nano Lett. 9:8 (2009), 2825–2831.
Jin, Y.D., Jia, C.X., Huang, S.W., O'Donnell, M., Gao, X.H., Multifunctional nanoparticles as coupled contrast agents. Nat. Commun., 1, 2010.
Lin, S.T., Shah, A., Hernandez-Gil, J., Stanziola, A., Harriss, B.I., Matsunaga, T.O., Long, N., Bamber, J., Tang, M.X., Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging. Photoacoustics 6 (2017), 26–36.
Larina, I.V., Larin, K.V., Esenaliev, R.O., Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D-Appl. Phys. 38:15 (2005), 2633–2639.
Nikitin, S.M., Khokhlova, T.D., Pelivanov, I.M., Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies. J. Biomed. Opt., 17(6), 2012.
Chen, Y.S., Frey, W., Walker, C., Aglyamov, S., Emelianov, S., Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping. J. Biophotonics 6:6-7 (2013), 534–542.
Petrova, E.V., Oraevsky, A.A., Ermilov, S.A., Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring. Appl. Phys. Lett., 105(9), 2014.
Li, C.H., Wang, L.H.V., Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54:19 (2009), R59–R97.
Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., Johnston, K., Milner, T., Emelianov, S.Y., Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt., 13(3), 2008.
Schule, G., Huttmann, G., Framme, C., Roider, O., Brinkmann, R., Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation. J. Biomed. Opt. 9:1 (2004), 173–179.
Ke, H.X., Tai, S., Wang, L.H.V., Photoacoustic thermography of tissue. J. Biomed. Opt., 19(2), 2014.
Feng, X.H., Gao, F., Zheng, Y.J., Photoacoustic-based-close-loop temperature control for nanoparticle hyperthermia. IEEE Trans. Bio.-Med. Eng. 62:7 (2015), 1728–1737.
Feng, X.H., Gao, F., Xu, C.Y., Li, G.M., Zheng, Y.J., Self temperature regulation of photothermal therapy by laser-shared photoacoustic feedback. Opt. Lett. 40:19 (2015), 4492–4495.
Landa, F.J.O., Dean-Ben, X.L., Sroka, R., Razansky, D., Volumetric Optoacoustic Temperature Mapping in Photothermal Therapy. Sci. Rep., 7, 2017.
Hristova, Y., Kuchment, P., Nguyen, L., Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl., 24(5), 2008.
Cox, B.T., Treeby, B.E., Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media. IEEE Trans. Med. Imaging 29:2 (2010), 387–396.
Tzoumas, S., Nunes, A., Olefir, I., Stangl, S., Symvoulidis, P., Glasl, S., Bayer, C., Multhoff, G., Ntziachristos, V., Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat. Commun., 7, 2016.
Heisterkamp, J., van Hillegersberg, R., Ijzermans, J.N.M., Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg. Med. 25:3 (1999), 257–262.
Goldberg, S.N., Gazelle, G.S., Halpern, E.F., Rittman, W.J., Mueller, P.R., Rosenthal, D.I., Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad. Radiol. 3:3 (1996), 212–218.
Seeboth, A., Lotzsch, D., Ruhmann, R., Muehling, O., Thermochromic Polymers-Function by Design. Chem. Rev. 114:5 (2014), 3037–3068.
Liu, L.W., Creten, S., Firdaus, Y., Cuautle, J.J.A.F., Kouyate, M., Van der Auweraer, M., Glorieux, C., Fluorescence spectra shape based dynamic thermometry. Appl. Phys. Lett., 104(3), 2014.
Liu, L.W., Zhong, K., Munro, T., Alvarado, S., Cote, R., Creten, S., Fron, E., Ban, H., Van der Auweraer, M., Roozen, N.B., Matsuda, O., Glorieux, C., Wideband fluorescence-based thermometry by neural network recognition: Photothermal application with 10 ns time resolution. J. Appl. Phys., 118(18), 2015.