Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system
Dolgova, Dinara; ABAKUMOVA, T; GENING, Tet al.
2019 • In Biomedical Optics Express, 10 (8), p. 4261
Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system
Publication date :
31 July 2019
Journal title :
Biomedical Optics Express
Publisher :
The Optical Society, United States - District of Columbia
Volume :
10
Issue :
8
Pages :
4261
Peer reviewed :
Peer reviewed
Research unit :
F108 - Electromagnétisme et Télécommunications
Research institute :
R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
M. M. Asimov, “Biomedical effects of in vivo laser induced oxyhemoglobin photodissociation,” Opt. Spectrosc. 115(1), 867–872 (2013).
S. D. Zakharov and A. V. Ivanov, “Light-oxygen effect in cells and its potential applications in tumor therapy (review),” Quantum Electron. 29(12), 1031–1053 (1999).
A. A. Krasnovsky, Jr., “Luminescence and photochemical studies of singlet oxygen photonics,” J. Photochem. Photobiol. Chem. 196(2-3), 210–218 (2008).
S. G. Sokolovski, S. A. Zolotovskaya, A. Goltsov, C. Pourreyron, A. P. South, and E. U. Rafailov, “Infrared laser pulse triggers increased singlet oxygen production in tumour cells,” Sci. Rep. 3(1), 3484 (2013).
F. Anquez, E. Courtade, A. Sivéry, P. Suret, and S. Randoux, “A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm,” Opt. Express 18(22), 22928–22936 (2010).
T. P. Gening, O. S. Voronova, D. R. Dolgova, T. V. Abakumova, I. O. Zolotovskii, E. M. Sholokhov, A. S. Kurkov, and S. O. Gening, “Analysis of the efficiency of using 1265-nm CW laser radiation for initiating oxidative stress in the tissue of a solid malignant tumor,” Quantum Electron. 42(9), 805–807 (2012).
Y. V. Saenko, E. S. Glushchenko, I. O. Zolotovskii, E. Sholokhov, and A. Kurkov, “Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm,” Lasers Med. Sci. 31(3), 405–413 (2016).
A. Khokhlova, I. Zolotovskii, D. Stoliarov, S. Vorsina, D. Liamina, E. Pogodina, A. Fotiadi, S. Sokolovski, Y. Saenko, and E. Rafailov, “The photobiomodulation of vital parameters of the cancer cell culture by low dose of Near-IR laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 25(1), 7201510 (2019).
A. Khokhlova, I. Zolotovskii, E. Pogodina, Y. Saenko, D. Stoliarov, S. Vorsina, A. Fotiadi, D. Liamina, S. Sokolovski, and E. Rafailov, “Effects of high and low level 1265 nm laser irradiation on HCT116 cancer cells,” Proc. SPIE 10861, 108610L (2019).
K. Briviba, L. O. Klotz, and H. Sies, “Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems,” Biol. Chem. 378(11), 1259–1265 (1997).
L. O. Klotz, “Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen,” Biol. Chem. 383(3-4), 443–456 (2002).
L. O. Klotz, K. D. Kröncke, and H. Sies, “Singlet oxygen-induced signaling effects in mammalian cells,” Photochem. Photobiol. Sci. 2(2), 88–94 (2003).
T. I. Karu, “Cellular mechanisms of low-level laser therapy,” Biol. Bull. Rev. 121, 110–120 (2001).
G. I. Klebanov and E. A. Poltanov, “Primary free radical and secondary cell molecular mechanisms of laser therapy,” Laser Phys. 13(1), 1–14 (2003).
IuA. Vladimirov, G. I. Klebanov, G. G. Borisenko, and A. N. Osipov, “Molecular and cellular mechanisms of the low intensity laser radiation effect,” Biofizika 49(2), 339–350 (2004).
J. Banerjee, Y. C. Chan, and C. K. Sen, “MicroRNAs in skin and wound healing,” Physiol. Genomics 43(10), 543–556 (2011).
I. Yu. Kuzmina and T. M. Krauze, “Up-to-date aspects of laser therapy,” Int. Med. J. 2, 106–110 (2006).
V. Illarionov, “Laser therapy (clinical lecture),” Vrach 3, 11–15 (1993).
D. Gagnon, T. W. G. Gibson, A. Singh, A. R. zur Linden, J. E. Kazienko, and J. LaMarre, “An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model,” BMC Vet. Res. 12(1), 73 (2016).
H. Hirschberg and S. J. Madsen, “Cell Mediated Photothermal Therapy of Brain Tumors,” J. Neuroimmune Pharmacol. 12(1), 99–106 (2017).
J. Wang, L. Liu, Q. You, Y. Song, Q. Sun, Y. Wang, Y. Cheng, F. Tan, and N. Li, “All-in-One Theranostic Nanoplatform Based on Hollow MoSx for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy,” Theranostics 8(4), 955–971 (2018).
C. N. Zhou, C. Milanesi, and G. Jori, “An ultrastructural comparative evaluation of tumors photosensitized by porphyrins administered in aqueous solution, bound to liposomes or to lipoproteins,” Photochem. Photobiol. 48(4), 487–492 (1988).
C. Lu, F. Zhou, S. Wu, L. Liu, and D. Xing, “Phototherapy-induced antitumor immunity: long-term tumor suppression effects via photoinactivation of respiratory chain oxidase-triggered superoxide anion burst,” Antioxid. Redox Signal. 24(5), 249–262 (2016).
E. G. Novoselova, O. V. Glushkova, D. A. Cherenkov, V. M. Chudnovsky, and E. E. Fesenko, “Effects of low-power laser radiation on mice immunity,” Photodermatol. Photoimmunol. Photomed. 22(1), 33–38 (2006).
M. Mandalà, F. Galli, L. Cattaneo, B. Merelli, E. Rulli, S. Ribero, P. Quaglino, V. De Giorgi, J. Pigozzo, V. C. Sileni, A. Chirco, P. F. Ferrucci, M. Occelli, G. Imberti, D. Piazzalunga, D. Massi, C. Tondini, and P. Queirolo, “Mitotic rate correlates with sentinel lymph node status and outcome in cutaneous melanoma greater than 1 millimeter in thickness: a multi-institutional study of 1524 cases,” J. Am. Acad. Dermatol. 76(2), 264–273 (2017).
M. B. Pak, A. M. Mudunov, L. V. Demidov, R. I. Azizyan, V. Z. Brzhezovskiy, D. K. Stelmakh, Y. A. Bozhchenko, and A. V. Ignatova, “Effect of morphological prognostic factors on long-term treatment results in patients with head and neck skin melanoma,” Head and Neck Tumors 7(1), 61–68 (2017).
N. Zarkovic, M. H. Tillian, J. Schaur, G. Waeg, M. Jurin, and H. Esterbauer, “Inhibition of Melanoma B16-F10 Growth by Lipid Peroxidation Product 4-Hydroxynonenal,” Cancer Biother. 10(2), 153–156 (1995).
M. Donia, J. W. Kjeldsen, and I. M. Svane, “The controversial role of TNF in melanoma,” OncoImmunology 5(4), e1107699 (2016).
Y. Xu, T. Brenn, E. R. Brown, V. Doherty, and D. W. Melton, “Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors,” Br. J. Cancer 106(3), 553–561 (2012).
J. Chen, H. E. Feilotter, G. C. Paré, X. Zhang, J. G. Pemberton, C. Garady, D. Lai, X. Yang, and V. A. Tron, “MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma,” Am. J. Pathol. 176(5), 2520–2529 (2010).
D. Philippidou, M. Schmitt, D. Moser, C. Margue, P. V. Nazarov, A. Muller, L. Vallar, D. Nashan, I. Behrmann, and S. Kreis, “Signatures of microRNAs and selected microRNA target genes in human melanoma,” Cancer Res. 70(10), 4163–4173 (2010).
I. A. Asangani, P. W. Harms, L. Dodson, M. Pandhi, L. P. Kunju, C. A. Maher, D. R. Fullen, T. M. Johnson, T. J. Giordano, N. Palanisamy, and A. M. Chinnaiyan, “Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma,” Oncotarget 3(9), 1011–1025 (2012).
S. Valastyan, F. Reinhardt, N. Benaich, D. Calogrias, A. M. Szász, Z. C. Wang, J. E. Brock, A. L. Richardson, and R. A. Weinberg, “A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis,” Cell 137(6), 1032–1046 (2009).
Y. Pan, R. Wang, F. Zhang, Y. Chen, Q. Lv, G. Long, and K. Yang, “MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A,” Int. J. Clin. Exp. Pathol. 8(1), 384–393 (2015).
I. Pastar, A. A. Khan, O. Stojadinovic, E. A. Lebrun, M. C. Medina, H. Brem, R. S. Kirsner, J. J. Jimenez, C. Leslie, and M. Tomic-Canic, “Induction of specific microRNAs inhibits cutaneous wound healing,” J. Biol. Chem. 287(35), 29324–29335 (2012).
M. N. Aftab, M. E. Dinger, and R. J. Perera, “The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma,” Arch. Biochem. Biophys. 563, 60–70 (2014).
M. Inui, G. Martello, and S. Piccolo, “MicroRNA control of signal transduction,” Nat. Rev. Mol. Cell Biol. 11(4), 252–263 (2010).
A. N. Mardaryev, M. I. Ahmed, N. V. Vlahov, M. Y. Fessing, J. H. Gill, A. A. Sharov, and N. V. Botchkareva, “Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle,” FASEB J. 24(10), 3869–3881 (2010).
Y. Xu, B. Zhou, D. Wu, Z. Yin, and D. Luo, “Baicalin modulates microRNA expression in UVB irradiated mouse skin,” J. Biomed. Res. 26(2), 125–134 (2012).
V. B. Morhenn, W. J. Nahm, and J. N. Mansbridge, “Psoriatic keratinocytes are resistant to tumor necrosis factor alpha’s induction of mRNA for the NMDA-R2C subunit,” Exp. Dermatol. 22(11), 750–751 (2013).
C. Bruegger, W. Kempf, I. Spoerri, A. W. Arnold, P. H. Itin, and B. Burger, “MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals,” Exp. Dermatol. 22(6), 426–428 (2013).
O. Saydam, Y. Shen, T. Würdinger, O. Senol, E. Boke, M. F. James, B. A. Tannous, A. O. Stemmer-Rachamimov, M. Yi, R. M. Stephens, C. Fraefel, J. F. Gusella, A. M. Krichevsky, and X. O. Breakefield, “Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway,” Mol. Cell. Biol. 29(21), 5923–5940 (2009).
X. Feng, Z. Wang, R. Fillmore, and Y. Xi, “MiR-200, a new star miRNA in human cancer,” Cancer Lett. 344(2), 166–173 (2014).
A. Volchegorsky, A. G. Nalimov, B. G. Yarovinsky, and R. I. Lifshits, “Comparison of various approaches to definition of products of peroxidation of lipids in geptan-isopropanol extracts of blood,” Quest. of Medical chemistry 35(1), 127–131 (1989).
L. I. Andreeva, L. A. Kozhemiakin, and A. A. Kishkun, “Modification of the method of determining lipid peroxidation in a test using thiobarbituric acid,” Lab. Delo 11(11), 41–43 (1988).
V. A. Kashuro, A. I. Karpishchenko, S. I. Glushkov, T. M. Novikova, L. V. Minaeva, T. I. Glushkova, and V. V. Aksenov, “State of the system of glutathione and lipid peroxidation in tissues of the liver and kidneys of the rats with acute cyclophosphamide poisoning,” Nephrology (Carlton) 1(2), 81–85 (2006).
L. F. Xu, Z. P. Wu, Y. Chen, Q. S. Zhu, S. Hamidi, and R. Navab, “MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China,” PLoS One 9(8), e103698 (2014).
T. G. Ruksha, E. Yu. Sergeeva, N. V. Palkina, M. B. Aksenenko, A. V. Komina, G. M. Klimina, and R. N. Belonogov, “MicroRNAs as ultraviolet irradiation effects regulators in skin cells,” Tsitologiia 58(10), 733–743 (2016).
A. V. Armichev, A. V. Ivanov, N. A. Panasenko, S. N. Perov, and S. D. Zakharov, “Spectral dependence of erythrocyte response to low-intensity irradiation at 570–590 nm,” J. Russ. Laser Res. 16(2), 186–187 (1995).
F. Anquez, A. Sivéry, I. El Yazidi-Belkoura, J. Zemmouri, P. Suret, S. Randoux, and E. Courtade, “Chapter 4:Production of singlet oxygen by direct photoactivation of molecular oxygen”, in Singlet Oxygen: Applications in Biosciences and Nanosciences, Volume 1, S. Nonell, C. Flors, eds. (The Royal Society of Chemistry, 2016), pp. 75–91.
T. Gening, A. Sysolyatin, D. Arslanova, O. Voronova, I. Zolotovsky, V. Ostatochnikov, and M. Yavtushenko, “Effects of femtosecond laser radiation on blood cell suspensions,” Proc. SPIE 9701, 79010K (2011).
O. V. Belova, V. Y. Arion, and V. I. Sergienko, “Role of cytokines in immunological function of the skin,” Immunopathology, allergology, infectology 1, 41–55 (2008).
T. Kishimoto, “Interleukin-6: from basic science to medicine-40 years in immunology,” Annu. Rev. Immunol. 23(1), 1–21 (2005).
I. V. Zimina, Yu. M. Lopukhin, and V. Ya. Arion, “The skin as an immune organ: cellular elements and cytokines,” Immunologiya 1, 8–13 (1994).
S. Singh, N. Singh, and R. Handa, “Tumor necrosis factor-alpha in patients with malaria,” Indian J. Malariol. 37(1-2), 27–33 (2000).
J. Fransson, “Tumour necrosis factor-alpha does not influence proliferation and differentiation of healthy and psoriatic keratinocytes in a skin-equivalent model,” Acta Derm. Venereol. 80(6), 416–420 (2000).
T. R. Kwon, C. T. Oh, E. J. Choi, S. R. Kim, Y. J. Jang, E. J. Ko, D. Suh, K. H. Yoo, and B. J. Kim, “Ultraviolet light-emitting-diode irradiation inhibits TNF-α and IFN-γ-induced expression of ICAM-1 and STAT1 phosphorylation in human keratinocytes,” Lasers Surg. Med. 47(10), 824–832 (2015).
L. Gavish, L. S. Perez, P. Reissman, and S. D. Gertz, “Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression,” Lasers Surg. Med. 40(5), 371–378 (2008).
L. R. Sousa, B. N. Cavalcanti, and M. M. Marques, “Effect of laser phototherapy on the release of TNF-alpha and MMP-1 by endodontic sealer-stimulated macrophages,” Photomed. Laser Surg. 27(1), 37–42 (2009).
M. S. Moreira, I. T. Velasco, L. S. Ferreira, S. K. Ariga, D. F. Barbeiro, D. T. Meneguzzo, F. Abatepaulo, and M. M. Marques, “Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat,” J. Photochem. Photobiol. B 97(3), 145–151 (2009).
L. Kandolf-Sekulovic, M. Kataranovski, and M. D. Pavlovic, “Immunomodulatory effects of low-intensity near-infrared laser irradiation on contact hypersensitivity reaction,” Photodermatol. Photoimmunol. Photomed. 19(4), 203–212 (2003).