[6] Guo, W., Lu, C.-H., Orbach, R., Wang, F., Qi, X.-J., Cecconello, A., Seliktar, D., Willner, I., pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. (Weinheim, Ger) 27:1 (2015), 73–78.
[7] Zhao, Q., Qi, H.J., Xie, T., Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50 (2015), 79–120.
[8] Leng, J., Lan, X., Liu, Y., Du, S., Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56:7 (2011), 1077–1135.
[9] Lu, H., Lei, M., Yao, Y., Yu, K., Fu, Y., Shape memory polymer nanocomposites: nano-reinforcement and multifunctionalization. Nanosci. Nanotechnol. Lett. 6:9 (2014), 772–786.
[10] Meng, Q., Hu, J., A review of shape memory polymer composites and blends. Compos. A Appl. Sci. Manuf. 40:11 (2009), 1661–1672.
[11] Meng, H., Li, G., A review of stimuli-responsive shape memory polymer composites. Polymer 54:9 (2013), 2199–2221.
[15] Haibao, L., Kai, Y., Yanju, L., Jinsong, L., Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler. Smart Mater. Struct., 19(6), 2010, 065014.
[16] Mondal, S., Hu, J.L., Yong, Z., Free volume and water vapor permeability of dense segmented polyurethane membrane. J. Membr. Sci. 280:1–2 (2006), 427–432.
[17] Santo, L., Quadrini, F., Accettura, A., Villadei, W., Shape memory composites for self-deployable structures in aerospace applications. Procedia Eng. 88 (2014), 42–47.
[18] Mao, Y., Yu, K., Isakov, M.S., Wu, J., Dunn, M.L., Qi, H. Jerry, Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep., 5, 2015, 13616.
[19] Yanju, L., Haiyang, D., Liwu, L., Jinsong, L., Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct., 23(2), 2014, 023001.
[20] Huang, W.M., Zhao, Y., Wang, C.C., Ding, Z., Purnawali, H., Tang, C., Zhang, J.L., Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19:9 (2012), 1–34.
[21] Liu, C., Qin, H., Mather, P., Review of progress in shape-memory polymers. J. Mater. Chem. 17:16 (2007), 1543–1558.
[22] Li, F., Zhang, X., Hou, J., Xu, M., Luo, X., Ma, D., Kim, B.K., Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 64:8 (1997), 1511–1516.
[23] Kim, B.K., Lee, S.Y., Xu, M., Polyurethanes having shape memory effects. Polymer 37:26 (1996), 5781–5793.
[24] Takahashi, T., Hayashi, N., Hayashi, S., Structure and properties of shape-memory polyurethane block copolymers. J. Appl. Polym. Sci. 60:7 (1996), 1061–1069.
[25] Ji, F.L., Hu, J.L., Li, T.C., Wong, Y.W., Morphology and shape memory effect of segmented polyurethanes. Part I: With crystalline reversible phase. Polymer 48:17 (2007), 5133–5145.
[26] Zhuohong, Y., Jinlian, H., Yeqiu, L., Lapyan, Y., The study of crosslinked shape memory polyurethanes. Mater. Chem. Phys. 98:2 (2006), 368–372.
[27] Ping, P., Wang, W., Chen, X., Jing, X., Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:2 (2005), 587–592.
[28] Lendlein, A., Schmidt, A.M., Langer, R., AB-polymer networks based on oligo (ɛ-caprolactone) segments showing shape-memory properties. Proc. Natl. Acad. Sci. 98:3 (2001), 842–847.
[29] Wang, M., Zhang, L., Recovery as a measure of oriented crystalline structure in poly (ether ester) s based on poly (ethylene oxide) and poly (ethylene terephthalate) used as shape memory polymers. J. Polym. Sci., Part B: Polym. Phys. 37:2 (1999), 101–112.
[30] Wang, M., Luo, X., Zhang, X., Ma, D., Shape memory properties in poly (ethylene oxide)–poly (ethylene terephthalate) copolymers. Polym. Adv. Technol. 8:3 (1997), 136–139.
[31] Luo, X., Zhang, X., Wang, M., Ma, D., Xu, M., Li, F., Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer. J. Appl. Polym. Sci. 64:12 (1997), 2433–2440.
[32] Lendlein, A., Langer, R., Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:5573 (2002), 1673–1676.
[33] Zhang, J., Wu, G., Huang, C., Niu, Y., Chen, C., Chen, Z., Yang, K., Wang, Y., Unique multifunctional thermally-induced shape memory poly(p-dioxanone)–poly(tetramethylene oxide)glycol multiblock copolymers based on the synergistic effect of two segments. J. Phys. Chem. C 116:9 (2012), 5835–5845.
[34] Rousseau, I.A., Challenges of shape memory polymers: a review of the progress toward overcoming SMP's limitations. Polym. Eng. Sci. 48:11 (2008), 2075–2089.
[36] Behl, M., Lendlein, A., Shape-memory polymers. Mater. Today 10:4 (2007), 20–28.
[37] Lendlein, A., Behl, M., Hiebl, B., Wischke, C., Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Dev. 7:3 (2010), 357–379.
[38] Hu, J., Meng, H., Li, G., Ibekwe, S.I., A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct., 21(5), 2012, 053001.
[39] Zhang, H., Xia, H., Zhao, Y., Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient. ACS Macro Lett. 3:9 (2014), 940–943.
[40] Lan, X., Liu, Y., Lv, H., Wang, X., Leng, J., Du, S., Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater. Struct., 18(2), 2009, 024002.
[41] Lu, H., Gou, J., Fabrication and electroactive responsive behavior of shape–memory nanocomposite incorporated with self-assembled multiwalled carbon nanotube nanopaper. Polym. Adv. Technol. 23:12 (2012), 1529–1535.
[44] Razzaq, M.Y., Behl, M., Lendlein, A., Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22:1 (2012), 184–191.
[45] Weigel, T., Mohr, R., Lendlein, A., Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Mater. Struct., 18(2), 2009, 025011.
[46] Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 103:10 (2006), 3540–3545.
[47] Yang, B., Huang, W.M., Li, C., Li, L., Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47:4 (2006), 1348–1356.
[49] Jiang, H., Kelch, S., Lendlein, A., Polymers move in response to light. Adv. Mater. 18:11 (2006), 1471–1475.
[50] Lendlein, A., Jiang, H., Junger, O., Langer, R., Light-induced shape-memory polymers. Nature 434:7035 (2005), 879–882.
[51] Sodhi, J.S., Rao, I.J., Modeling the mechanics of light activated shape memory polymers. Int. J. Eng. Sci. 48:11 (2010), 1576–1589.
[52] Habault, D., Zhang, H., Zhao, Y., Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42:17 (2013), 7244–7256.
[53] Yu, Y., Ikeda, T., Photodeformable polymers: a new kind of promising smart material for micro- and nano-applications. Macromol. Chem. Phys. 206:17 (2005), 1705–1708.
[54] Jin, C., Sun, X., Wu, L., Synthesis and characterization of N,N-bis(2-hydroxyethyl) cinnamamide as a photo-responsive monomer. Des. Monomers Polym. 14:1 (2011), 47–55.
[55] Wu, L., Jin, C., Sun, X., Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12:1 (2011), 235–241.
[57] Lu, H., A simulation method to analyze chemo-mechanical behavior of swelling-induced shape-memory polymer in response to solvent. J. Appl. Polym. Sci. 123:2 (2012), 1137–1146.
[61] Bellin, I., Kelch, S., Lendlein, A., Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17:28 (2007), 2885–2891.
[62] Bellin, I., Kelch, S., Langer, R., Lendlein, A., Polymeric triple-shape materials. Proc. Natl. Acad. Sci. 103:48 (2006), 18043–18047.
[63] Behl, M., Bellin, I., Kelch, S., Wagermaier, W., Lendlein, A., One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19:1 (2009), 102–108.
[64] Wei, M., Zhan, M., Yu, D., Xie, H., He, M., Yang, K., Wang, Y., Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity. ACS Appl. Mater. Interfaces 7:4 (2015), 2585–2596.
[65] Xiao, L., Wei, M., Zhan, M., Zhang, J., Xie, H., Deng, X., Yang, K., Wang, Y., Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5:7 (2014), 2231–2241.
[66] Wang, L., Yang, X., Chen, H., Gong, T., Li, W., Yang, G., Zhou, S., Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 5:21 (2013), 10520–10528.
[68] Bae, C.Y., Park, J.H., Kim, E.Y., Kang, Y.S., Kim, B.K., Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21:30 (2011), 11288–11295.
[73] Pretsch, T., Triple-shape properties of a thermoresponsive poly (ester urethane). Smart Mater. Struct., 19(1), 2010, 015006.
[74] Kolesov, I., Radusch, H., Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes. Express Polym. Lett. 2:7 (2008), 461–473.
[81] Zhang, F.H., Zhang, Z.C., Luo, C.J., Lin, I.T., Liu, Y., Leng, J., Smoukov, S.K., Remote, fast actuation of programmable multiple shape memory composites by magnetic fields. J. Mater. Chem. C 3:43 (2015), 11290–11293.
[82] Pei, Z., Yang, Y., Chen, Q., Wei, Y., Ji, Y., Regional shape control of strategically assembled multishape memory Vitrimers. Adv. Mater. (Weinheim, Ger) 28:1 (2016), 156–160.
[83] Samuel, C., Barrau, S., Lefebvre, J.-M., Raquez, J.-M., Dubois, P., Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules 47:19 (2014), 6791–6803.
[84] Pandini, S., Passera, S., Messori, M., Paderni, K., Toselli, M., Gianoncelli, A., Bontempi, E., Riccò, T., Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53:9 (2012), 1915–1924.
[85] Ishida, K., Yoshie, N., Two-way conversion between hard and soft properties of semicrystalline cross-linked polymer. Macromolecules 41:13 (2008), 4753–4757.
[86] Chung, T., Romo-Uribe, A., Mather, P.T., Two-way reversible shape memory in a semicrystalline network. Macromolecules 41:1 (2008), 184–192.
[87] Thomsen, D.L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D., Ratna, B.R., Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:17 (2001), 5868–5875.
[88] Qin, H., Mather, P.T., Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42:1 (2009), 273–280.
[89] Raquez, J.-M., Vanderstappen, S., Meyer, F., Verge, P., Alexandre, M., Thomassin, J.-M., Jérôme, C., Dubois, P., Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through diels-alder reactions. Chem. – Eur. J. 17:36 (2011), 10135–10143.
[91] Behl, M., Kratz, K., Zotzmann, J., Nöchel, U., Lendlein, A., Reversible bidirectional shape-memory polymers. Adv. Mater. 25:32 (2013), 4466–4469.
[92] Behl, M., Kratz, K., Noechel, U., Sauter, T., Lendlein, A., Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. 110:31 (2013), 12555–12559.
[93] Wu, Y., Hu, J., Han, J., Zhu, Y., Huang, H., Li, J., Tang, B., Two-way shape memory polymer with “switch-spring” composition by interpenetrating polymer network. J. Mater. Chem. A 2:44 (2014), 18816–18822.
[94] Wang, S.Q., Kaneko, D., Okajima, M., Yasaki, K., Tateyama, S., Kaneko, T., Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew. Chem. Int. Ed. 52:42 (2013), 11143–11148.
[95] Yasaki, K., Suzuki, T., Yazawa, K., Kaneko, D., Kaneko, T., Effects of double photoreactions on polycoumarate photomechanics. J. Polym. Sci., Part A: Polym. Chem. 49:5 (2011), 1112–1118.
[96] Chauzar, M., Tateyama, S., Ishikura, T., Matsumoto, K., Kaneko, D., Ebitani, K., Kaneko, T., Hydrotalcites catalyze the acidolysis polymerization of phenolic acid to create highly heat-resistant bioplastics. Adv. Funct. Mater. 22:16 (2012), 3438–3444.
[105] Raja, M., Ryu, S.H., Shanmugharaj, A.M., Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur. Polym. J. 49:11 (2013), 3492–3500.
[106] Cai, Y., Feng, X., Jiang, J.-S., Novel kind of functional gradient poly(ε-caprolactone) polyurethane nanocomposite: a shape-memory effect induced in three ways. J. Appl. Polym. Sci., 131(9), 2014.
[107] Abraham, T.N., Ratna, D., Siengchin, S., Karger-Kocsis, J., Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 110:4 (2008), 2094–2101.
[108] Gou, J., Single-walled nanotube bucky paper and nanocomposite. Polym. Int. 55:11 (2006), 1283–1288.
[109] Zhao, Z., Gou, J., Improved fire retardancy of thermoset composites modified with carbon nanofibers. Sci. Technol. Adv. Mater., 10(1), 2009, 015005.
[110] Haibao, L., Yanju, L., Jihua, G., Jinsong, L., Shanyi, D., Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater. Struct., 19(7), 2010, 075021.
[111] Lu, H., Liu, Y., Gou, J., Leng, J., Du, S., Surface coating of multi-walled carbon nanotube nanopaper on shape-memory polymer for multifunctionalization. Compos. Sci. Technol. 71:11 (2011), 1427–1434.
[112] Luo, H., Ma, Y., Li, W., Yi, G., Cheng, X., Ji, W., Zu, X., Yuan, S., Li, J., Shape memory-enhanced water sensing of conductive polymer composites. Mater. Lett. 161 (2015), 189–192.
[113] Yu, K., Liu, Y., Leng, J., Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 4:6 (2014), 2961–2968.
[114] Miaudet, P., Derré, A., Maugey, M., Zakri, C., Piccione, P.M., Inoubli, R., Poulin, P., Shape and temperature memory of nanocomposites with broadened glass transition. Science 318:5854 (2007), 1294–1296.
[115] Raja, M., Ryu, S.H., Shanmugharaj, A.M., Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene difluoride) (PVDF) composites. Colloids Surf. A 450 (2014), 59–66.
[117] Amirian, M., Chakoli, A.N., Sui, J., Cai, W., Enhanced shape memory effect of poly (L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J. Polym. Res. 19:2 (2012), 1–10.
[118] Lu, H., Min Huang, W., Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett., 102(23), 2013, 231910.
[119] Dong, Y., Xia, H., Zhu, Y., Ni, Q.-Q., Fu, Y., Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos. Sci. Technol. 120 (2015), 17–25.
[120] Alam, J., Khan, A., Alam, M., Mohan, R., Electroactive shape memory property of a Cu-decorated CNT dispersed PLA/ESO nanocomposite. Materials 8:9 (2015), 6391–6400.
[121] Raja, M., Shanmugharaj, A.M., Ryu, S.H., Subha, J., Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators. Mater. Chem. Phys. 129:3 (2011), 925–931.
[122] Sahoo, N.G., Jung, Y.C., Yoo, H.J., Cho, J.W., Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 67:9 (2007), 1920–1929.
[123] Lu, H., Yao, Y., Huang, W.M., Leng, J., Hui, D., Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos. B Eng. 62 (2014), 256–261.
[124] Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., Superfine, R., Bending and buckling of carbon nanotubes under large strain. Nature 389:6651 (1997), 582–584.
[125] Li, Q., Liu, C., Lin, Y.-H., Liu, L., Jiang, K., Fan, S., Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9:1 (2015), 409–418.
[126] Lu, X., Zhang, Z., Li, H., Sun, X., Peng, H., Conjugated polymer composite artificial muscle with solvent-induced anisotropic mechanical actuation. J. Mater. Chem. A 2:41 (2014), 17272–17280.
[127] Gunes, I.S., Jimenez, G.A., Jana, S.C., Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon 47:4 (2009), 981–997.
[128] Dong, Y., Ding, J., Wang, J., Fu, X., Hu, H., Li, S., Yang, H., Xu, C., Du, M., Fu, Y., Synthesis and properties of the vapour-grown carbon nanofiber/epoxy shape memory and conductive foams prepared via latex technology. Compos. Sci. Technol. 76 (2013), 8–13.
[129] Dong, J., Ding, J., Weng, J., Dai, L., Graphene enhances the shape memory of poly (acrylamide-co-acrylic acid) grafted on graphene. Macromol. Rapid Commun. 34:8 (2013), 659–664.
[130] Luo, X., Mather, P.T., Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:10 (2010), 2146–2149.
[131] Li, F., Qi, L., Yang, J., Xu, M., Luo, X., Ma, D., Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J. Appl. Polym. Sci. 75:1 (2000), 68–77.
[132] Leng, J., Lv, H., Liu, Y., Du, S., Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl. Phys. Lett., 91(14), 2007, 144105.
[133] Lu, H., Gou, J., Leng, J., Du, S., Magnetically aligned carbon nanotube in nanopaper enabled shape-memory nanocomposite for high speed electrical actuation. Appl. Phys. Lett., 98(17), 2011, 174105.
[134] Qi, X., Yao, X., Deng, S., Zhou, T., Fu, Q., Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J. Mater. Chem. A 2:7 (2014), 2240–2249.
[136] Yadav, S.K., Yoo, H.J., Cho, J.W., Click coupled graphene for fabrication of high-performance polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 51:1 (2013), 39–47.
[137] Lu, H., Gou, J., Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotechnol. Lett. 4:12 (2012), 1155–1159.
[138] Wang, W., Liu, D., Liu, Y., Leng, J., Bhattacharyya, D., Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos. Sci. Technol. 106 (2015), 20–24.
[139] Lu, H., Yao, Y., Huang, W.M., Hui, D., Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites. Compos. B Eng. 67 (2014), 290–295.
[140] Zhang, H., Zhao, Y., Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl. Mater. Interfaces 5:24 (2013), 13069–13075.
[141] Hribar, K.C., Metter, R.B., Burdick, J.A., Novel nano-composite biomaterials that respond to light. Dept. Papers (BE), 2009, 151.
[142] Hribar, K.C., Lee, M.H., Lee, D., Burdick, J.A., Enhanced release of small molecules from near-infrared light responsive polymer−nanorod composites. ACS Nano 5:4 (2011), 2948–2956.
[143] Zheng, Y., Li, J., Lee, E., Yang, S., Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Adv. 5:39 (2015), 30495–30499.
[144] Chen, C.-M., Chiang, C.-L., Yang, S., Programming tilting angles in shape memory polymer Janus pillar arrays with unidirectional wetting against the tilting direction. Langmuir 31:35 (2015), 9523–9526.
[151] Li, G., Zhu, R., Yang, Y., Polymer solar cells. Nat. Photon. 6:3 (2012), 153–161.
[152] Yu, Z., Li, L., Zhang, Q., Hu, W., Pei, Q., Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. (Weinheim, Ger) 23:38 (2011), 4453–4457.
[153] Haibao, L., Fei, L., Jihua, G., Jinsong, L., Shanyi, D., Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites. Smart Mater. Struct., 23(8), 2014, 085034.
[154] Lu, H., Zhu, S., Yang, Y., Huang, W.M., Leng, J., Du, S., Surface grafting of carbon fibers with artificial silver-nanoparticle-decorated graphene oxide for high-speed electrical actuation of shape-memory polymers. J. Appl. Polym. Sci., 132(12), 2015.
[155] Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Proc. Natl. Acad. Sci. USA, 103, 2006, 3540.
[156] Langer, R., Tirrell, D.A., Nature, 428, 2004, 487.
[157] Zheng, X., Zhou, S., Xiao, Y., Yu, X., Li, X., Wu, P., Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf. B 71:1 (2009), 67–72.
[158] Zhang, X., Lu, X., Wang, Z., Wang, J., Sun, Z., Biodegradable shape memory nanocomposites with thermal and magnetic field responsiveness. J. Biomater. Sci. Polym. Ed. 24:9 (2013), 1057–1070.
[159] Yu, X., Zhou, S., Zheng, X., Xiao, Y., Guo, T., Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J. Phys. Chem. C 113:41 (2009), 17630–17635.
[163] Bai, S., Zou, H., Dietsch, H., Simon, Y.C., Weder, C., Functional iron oxide nanoparticles as reversible crosslinks for magnetically addressable shape-memory polymers. Macromol. Chem. Phys. 215:5 (2014), 398–404.
[164] Shuang, X., Xingjian, L., Yaru, W., Yi, P., Zhaohui, Z., Xiaobin, D., Yuxing, P., A remote-activated shape memory polymer network employing vinyl-capped Fe3O4 nanoparticles as netpoints for durable performance. Smart Mater. Struct., 23(8), 2014, 085005.
[165] Schmidt, A.M., Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 27:14 (2006), 1168–1172.
[166] Li, W., Liu, Y., Leng, J., Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Adv. 4:106 (2014), 61847–61854.
[167] Cai, Y., Jiang, J.-S., Zheng, B., Xie, M.-R., Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J. Appl. Polym. Sci. 127:1 (2013), 49–56.
[168] Beauty, D., Manabendra, M., Aadesh, U., Pronobesh, C., Niranjan, K., Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater., 8(3), 2013, 035003.
[169] Gupta, S.M., Tripathi, M., A review of TiO2 nanoparticles. Chin. Sci. Bull. 56:16 (2011), 1639–1657.
[170] Iijima, M., Kobayakawa, M., Yamazaki, M., Ohta, Y., Kamiya, H., Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites. J. Am. Chem. Soc. 131:45 (2009), 16342–16343.
[171] Lu, X.-L., Lü, X.-q., Wang, J.-y., Sun, Z.-j., Tong, Y.-x., Preparation and shape memory properties of TiO2/PLCL biodegradable polymer nanocomposites. Trans. Nonferrous Met. Soc. China 23:1 (2013), 120–127.
[172] Thakur, S., Karak, N., Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2-reduced graphene oxide nanohybrid. J. Mater. Chem. A 3:23 (2015), 12334–12342.
[173] Kołodziejczak-Radzimska, A., Jesionowski, T., Zinc oxide—from synthesis to application: a review. Materials 7:4 (2014), 2833–2881.
[174] Nan, W., Wang, W., Gao, H., Liu, W., Fabrication of a shape memory hydrogel based on imidazole–zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9:1 (2013), 132–137.
[187] Saralegi, A., Gonzalez, M.L., Valea, A., Eceiza, A., Corcuera, M.A., The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos. Sci. Technol. 92 (2014), 27–33.
[188] Sonseca, Á., Camarero-Espinosa, S., Peponi, L., Weder, C., Foster, E.J., Kenny, J.M., Giménez, E., Mechanical and shape-memory properties of poly(mannitol sebacate)/cellulose nanocrystal nanocomposites. J. Polym. Sci., Part A: Polym. Chem. 52:21 (2014), 3123–3133.
[189] Zhang, C.-S., Ni, Q.-Q., Bending behavior of shape memory polymer based laminates. Compos. Struct. 78:2 (2007), 153–161.
[190] Douglas, C., Mark, L., Mark, S., Emmett, N., Randal, S., Elastic memory composite material: an enabling technology for future furlable space structures. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005, American Institute of Aeronautics and Astronautics.
[191] Sen, R., Zhao, B., Perea, D., Itkis, M.E., Hu, H., Love, J., Bekyarova, E., Haddon, R.C., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4:3 (2004), 459–464.
[192] Kim, M.S., Jun, J.K., Jeong, H.M., Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos. Sci. Technol. 68:7–8 (2008), 1919–1926.