Wender H, Migowski P, Feil A F, Teixeira S R and Dupont J 2013 Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends Coord. Chem. Rev. 257 2468-83
Xiao J-W, Fan S-X, Wang F, Sun L-D, Zheng X-Y and Yan C-H 2014 Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells Nanoscale 6 4345-51
Shen H et al 2012 Cooperative, nanoparticle-enabled thermal therapy of breast cancer Adv. Healthcare Mater. 1 84-89
Fujita T et al 2012 Atomic origins of the high catalytic activity of nanoporous gold Nat. Mater. 11 775-80
Hu J, Jiang R, Zhang H, Guo Y, Wang J and Wang J 2018 Colloidal porous gold nanoparticles Nanoscale 10 18473-81
Li K, Liu G, Zhang S, Dai Y, Ghafoor S, Huang W, Zu Z and Lu Y 2019 A porous Au-Ag hybrid nanoparticle array with broadband absorption and high-density hotspots for stable SERS analysis Nanoscale 11 9587-92
Fan H J, Gösele U and Zacharias M 2007 Formation of nanotubes and hollow nanoparticles based on kirkendall and diffusion processes: a review Small 3 1660-71
El Mel-A-A, Nakamura R and Bittencourt C 2015 The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes Beilstein J. Nanotechnol. 6 1348-61
El Mel-A-A et al 2016 Galvanic replacement reaction: a route to highly ordered bimetallic nanotubes J. Phys. Chem. C 120 17652-9
Preciado-Flores S, Wang D, Wheeler D A, Newhouse R, Hensel J K, Schwartzberg A, Wang L, Zhu J, Barboza-Flores M and Zhang J Z 2011 Highly reproducible synthesis of hollow gold nanospheres with near infrared surface plasmon absorption using PVP as stabilizing agent J. Mater. Chem. 21 2344-50
Tu K N and Gösele U 2005 Hollow nanostructures based on the Kirkendall effect: design and stability considerations Appl. Phys. Lett. 86 093111
Kosinova A, Wang D, Schaaf P, Kovalenko O, Klinger L and Rabkin E 2016 Fabrication of hollow gold nanoparticles by dewetting, dealloying and coarsening Acta Mater. 102 108-15
Erlebacher J 2004 An atomistic description of dealloying J. Electrochem. Soc. 151 C614
Wittstock A, Biener J, Erlebacher J and Bäumer M 2012 Nanoporous Gold: From an Ancient Technology to a High-tech Material (Cambridge, UK: Royal Society of Chemistry) https://doi.org/10.1039/9781849735285
El Mel-A-A, Boukli-Hacene F, Molina-Luna L, Bouts N, Chauvin A, Thiry D, Gautron E, Gautier N and Tessier P-Y 2015 Unusual dealloying effect in gold/copper alloy thin films: the role of defects and column boundaries in the formation of nanoporous gold ACS Appl. Mater. Interfaces 7 2310-21
Wang D and Schaaf P 2012 Nanoporous gold nanoparticles J. Mater. Chem. 22 5344
Li X, Chen Q, McCue I, Snyder J, Crozier P, Erlebacher J and Sieradzki K 2014 Dealloying of noble-metal alloy nanoparticles Nano Lett. 14 2569-77
Dupont J and Scholten J D 2010 On the structural and surface properties of transition-metal nanoparticles in ionic liquids Chem. Soc. Rev. 39 1780
Ishida Y, Udagawa S and Yonezawa T 2016 Growth of sputtered silver nanoparticles on a liquid mercaptan matrix with controlled viscosity and sputter rate Colloids Surf. A: Physicochem. Eng. Asp. 498 106-11
Carette X et al 2018 On the sputtering of titanium and silver onto liquids, discussing the formation of nanoparticles J. Phys. Chem. C 122 26605-12
Deng L, Nguyen M T and Yonezawa T 2018 Sub-2 nm single-crystal Pt nanoparticles via sputtering onto a liquid polymer Langmuir 34 2876-81
Hatakeyama Y, Morita T, Takahashi S, Onishi K and Nishikawa K 2011 Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape J. Phys. Chem. C 115 3279-85
Hatakeyama Y, Takahashi S and Nishikawa K 2010 Can temperature control the size of Au nanoparticles prepared in ionic liquids by the sputter deposition technique? J. Phys. Chem. C 114 11098-102
Wender H, de Oliveira L F, Feil A F, Lissner E, Migowski P, Meneghetti M R, Teixeira S R and Dupont J 2010 Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil Chem. Commun. 46 7019
Kim D, Resasco J, Yu Y, Asiri A M and Yang P 2014 Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles Nat. Commun. 5 1-8
Liu C, Cai X, Wang J, Liu J, Riese A, Chen Z, Sun X and Wang S-D 2016 One-step synthesis of AuPd alloy nanoparticles on graphene as a stable catalyst for ethanol electro-oxidation Int. J. Hydrogen Energy 41 13476-84
Kaito T, Mitsumoto H, Sugawara S, Shinohara K, Uehara H, Ariga H, Takakusagi S, Hatakeyama Y, Nishikawa K and Asakura K 2014 K-edge x-ray absorption fine structure analysis of Pt/Au core-shell electrocatalyst: evidence for short Pt-Pt distance J. Phys. Chem. C 118 8481-90
Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S and Torimoto T 2008 Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique Chem. Commun. 6 691-3
Suzuki S, Tomita Y, Kuwabata S and Torimoto T 2015 Synthesis of alloy AuCu nanoparticles with the L1: 0 structure in an ionic liquid using sputter deposition Dalton Trans. 44 4186-94
Sugioka D, Kameyama T, Kuwabata S, Yamamoto T and Torimoto T 2016 Formation of a Pt-decorated Au nanoparticle monolayer floating on an ionic liquid by the ionic liquid/metal sputtering method and tunable electrocatalytic activities of the resulting monolayer ACS Appl. Mater. Interfaces 8 10874-83
König D, Richter K, Siegel A, Mudring A-V and Ludwig A 2014 High-throughput fabrication of Au-Cu nanoparticle libraries by combinatorial sputtering in ionic liquids Adv. Funct. Mater. 24 2049-56
Nguyen M T, Zhang H, Deng L, Tokunaga T and Yonezawa T 2017 Au/Cu bimetallic nanoparticles via double-target sputtering onto a liquid polymer Langmuir 33 12389-97
Chau Y R, Nguyen M T, Zhu M, Romier A, Tokunaga T and Yonezawa T 2020 Synthesis of composition-tunable Pd-Cu alloy nanoparticles by double target sputtering New J. Chem. 44 4704-12
Corpuz R D, Ishida Y, Nguyen M T and Yonezawa T 2017 Synthesis of positively charged photoluminescent bimetallic Au-Ag nanoclusters by double-target sputtering method on a biocompatible polymer matrix Langmuir 33 9144-50
Anon (2013) Pentaerythritol ethoxylated European Chemical Agency (ECHA)
Chauvin A et al 2016 Planar arrays of nanoporous gold nanowires: when electrochemical dealloying meets nanopatterning ACS Appl. Mater. Interfaces 8 6611-20
Ye G, Zhang Q, Feng C, Ge H and Jiao Z 1996 Structural and electrical properties of a metallic rough-thin-film system deposited on liquid substrates Phys. Rev. B 54 14754-7
Girardot R, Viguier G, Ounsy M and Perez J 2017 Foxtrot (Synchrotron SOLEIL)
Artacho E et al 2008 The SIESTA method; developments and applicability J. Phys. Condens. Matter. 20 064208
Perdew J P, Burke K and Wang Y 1996 Generalized gradient approximation for the exchange-correlation hole of a many-electron system Phys. Rev. B 54 16533-9
Troullier N and Martins J L 1991 Efficient pseudopotentials for plane-wave calculations Phys. Rev. B 43 1993-2006
Nakagawa K, Narushima T, Udagawa S and Yonezawa T 2013 Preparation of copper nanoparticles in liquid by matrix sputtering process J. Phys. Conf. Ser. 417 012038
Wender H, Gonçalves R V, Feil A F, Migowski P, Poletto F S, Pohlmann A R, Dupont J and Teixeira S R 2011 Sputtering onto liquids: from thin films to nanoparticles J. Phys. Chem. C 115 16362-7
Iimori T, Hatakeyama Y, Nishikawa K, Kato M and Ohta N 2013 Visible photoluminescence of gold nanoparticles prepared by sputter deposition technique in a room-temperature ionic liquid Chem. Phys. Lett. 586 100-3
Shishino Y, Yonezawa T, Udagawa S, Hase K and Nishihara H 2011 Preparation of optical resins containing dispersed gold nanoparticles by the matrix sputtering method Angew. Chem., Int. Ed. 50 703-5
Turkevich J, Garton G and Stevenson P C 1954 The color of colloidal gold J. Colloid Sci. 9 26-35
Lisiecki I, Billoudet F and Pileni M P 1996 Control of the shape and the size of copper metallic particles J. Phys. Chem. 100 4160-6
Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J R, Vialle J L and Broyer M 2006 Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory Theor. Chem. Acc. 116 514-23
Deng L, Nguyen M T, Shi J, Chau Y R, Tokunaga T, Kudo M, Matsumura S, Hashimoto N and Yonezawa T 2020 Highly correlated size and composition of Pt/Au alloy nanoparticles via magnetron sputtering onto liquid Langmuir 36 3004-15
De Luna M M and Gupta M 2018 Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates Appl. Phys. Lett. 112 201605
Rueden C T, Schindelin J, Hiner M C and DeZonia B E, Walter A E, Arena E T and Eliceiri K W 2017 ImageJ2: imageJ for the next generation of scientific image data BMC Bioinform. 18 529
Schneider C A, Rasband W S and Eliceiri K W 2012 NIH image to imagej: 25 years of image analysis Nat. Methods 9 671-5
Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten R L and José-Yacaman M 2014 Gold-copper nano-alloy, " Tumbaga ", in the Era of nano: phase diagram and segregation Nano Lett. 14 6718-26
Ascencio J A, Liu H B, Pal U, Medina A and Wang Z L 2006 Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior Microsc. Res. Tech. 69 522-30
Bienert R, Emmerling F and Thünemann A F 2009 The size distribution of "gold standard" nanoparticles Anal. Bioanal. Chem. 395 1651-60
Ilavsky J and Jemian P R 2009 Irena : tool suite for modeling and analysis of small-angle scattering J. Appl. Crystallogr. 42 347-53
Deschamps A and De Geuser F 2011 On the validity of simple precipitate size measurements by small-angle scattering in metallic systems J. Appl. Crystallogr. 44 343-52
Partyka-Jankowska E, Leroch S, Akbarzadeh J, Pabisch S, Wendland M and Peterlik H 2014 SAXS studies on silica nanoparticle aggregation in a humid atmosphere J. Nanoparticle Res. 16 2642
Pedersen J S 1997 Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting I Adv. Colloid Interface Sci. 70 40
Jensen H, Pedersen J H, J⊘rgensen J E, Pedersen J S, Joensen K D, Iversen S B and S⊘gaard E G 2006 Determination of size distributions in nanosized powders by TEM, XRD, and SAXS J. Exp. Nanosci. 1 355-73
Beaucage G, Kammler H K and Pratsinis S E 2004 Particle size distributions from small-angle scattering using global scattering functions J. Appl. Crystallogr. 37 523-35
Sumi T, Motono S, Ishida Y, Shirahata N and Yonezawa T 2015 Formation and optical properties of fluorescent gold nanoparticles obtained by matrix sputtering method with volatile mercaptan molecules in the vacuum chamber and consideration of their structures Langmuir 31 4323-9
Borchert H, Shevchenko E V, Robert A, Mekis I, Kornowski A, Grübel G and Weller H 2005 Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt 3 particles Langmuir 21 1931-6
Arcidiacono S, Bieri N R, Poulikakos D and Grigoropoulos C P 2004 On the coalescence of gold nanoparticles Int. J. Multiph. Flow 30 979-94
Henkel A, Jakab A, Brunklaus G and Sönnichsen C 2009 Tuning plasmonic properties by alloying copper into gold nanorods J. Phys. Chem. C 113 2200-4
Borgohain K, Murase N and Mahamuni S 2002 Synthesis and properties of Cu2O quantum particles J. Appl. Phys. 92 1292-7
Yang Y, Matsubara S, Nogami M and Shi J 2007 Controlling the aggregation behavior of gold nanoparticles Mater. Sci. Eng. B 140 172-6
Thanh N T K, Maclean N and Mahiddine S 2014 Mechanisms of nucleation and growth of nanoparticles in solution Chem. Rev. 114 7610-30
Turkevich J, Stevenson P C and Hillier J 1951 A study of the nucleation and growth processes in the synthesis of colloidal gold Discuss. Faraday Soc. 11 55
Liu Y, Mills E N and Composto R J 2009 Tuning optical properties of gold nanorods in polymer films through thermal reshaping J. Mater. Chem. 19 2704
Karlsson M N A, Deppert K, Karlsson L S, Magnusson M H, Malm J-O and Srinivasan N S 2005 Compaction of agglomerates of aerosol nanoparticles: a compilation of experimental data J. Nanoparticle Res. 7 43-49
Rabani E, Reichman D R, Geissler P L and Brus L E 2003 Drying-mediated self-assembly of nanoparticles Nature 426 271-4