Laubender E, Tanvir NB, Urban G, Yurchenko O. Ceria-zirconia mixed oxide prepared through a microwave-assisted synthesis for CO2 sensing in low power work function sensors. Mater Today Proc. 2016;3(2):429.
Rajesh N, Kannan JC, Leonardi SG, Neri G, Krishnakumar T. Investigation of CdO nanostructures synthesized by microwave assisted irradiation technique for NO2 gas detection. J Alloys Compd. 2014;607:54.
Shi YG, Li ZH, Shi JY, Zhang F, Zhou XC, Li YH, Holmes M, Zhang W, Zou XB. Titanium dioxide-polyaniline/silk fibroin microfiber sensor for pork freshness evaluation. Sens Actuators B Chem. 2018;260:465.
Kiryukhin MV, Lau HH, Goh SH, Teh C, Korzh V, Sadovoy A. A membrane film sensor with encapsulated fluorescent dyes towards express freshness monitoring of packaged food. Talanta. 2018;182:187.
Lu YQ, Lu KH. Advancements in next-generation sequencing for diagnosis and treatment of non-small-cell lung cancer. Chron Dis Transl Med. 2017;3(1):1.
Gregis G, Sanchez JB, Bezverkhyy I, Guy W, Berger F, Fierro V, Bellat JP, Celzard A. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens Actuators B Chem. 2018;255:391.
Shinde SK, Kim D, Ghodake GS, Maile NC, Kadam AA, Sung D, Rath MC. Ultrasonics-sonochemistry morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance. Ultrason Sonochem. 2018;40:314.
Liu YL, Liao L, Li JC, Pan CX. From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties. J Phys Chem C. 2007;111(13):5050.
Wang ZY, Su FB, Madhavi S, Lou XW. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale. 2011;3:1618.
Dong JP, Tian TL, Ren LX, Zhang Y, Xu JQ, Cheng XW. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Colloids Surf B Biointerfaces. 2015;125:206.
Baloach Q, Nafady A, Tahira A, Sherazi STH, Shaikh T, Arain M, Willander M, Ibupoto ZH. An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures. Microsyst Technol. 2017;23(5):1229.
Rai P, Song HM, Kim YS, Song MK, Oh PR, Yoon JM, Yu YT. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater Lett. 2012;68:90.
Wang LN, Zhang X, Ma Y, Yang M, Qi YX. Rapid microwave-assisted hydrothermal synthesis of one-dimensional MoO3 nanobelts. Mater Lett. 2016;164:623.
Li MH, Zhu HC, Cheng J, Zhao MM, Yan WP. Synthesis and improved ethanol sensing performance of CuO/SnO2 based hollow microspheres. Porous Mater. 2017;24(2):507.
Zhou Q, Zeng W, Chen WG, Xu LN, Kumar R, Umar A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO–ZnO nanodisks. Sens Actuators B Chem. 2019;298:126870.
Claudino CH, Kuznetsova M, Rodrigues BS, Chen CQ, Wang ZY, Sardela M, Souza JS. Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity. Mater Res Bull. 2020;125:110783.
Phuruangrat A, Ham DJ, Thongtem S, Lee JS. Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem Commun. 2009;11(9):1740.
Rangel R, Cedeño V, Ramos-Corona A, Gutiérrez R, Alvarado-Gil JJ, Ares O, Bartolo-Pérez P, Quintana P. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis. Appl Phys A. 2017. 10.1007/s00339-017-1137-5. DOI: 10.1007/s00339-017-1137-5
Balaji G, Rathinam A, Vadivel S. A facile route to the synthesis of Zn-doped CdO nanostructures and a comparative investigation on humidity-sensing and photocatalytic applications. Electron Mater. 2018;47(9):5548.
Husham M, Hamidon MN, Paiman S, Abuelsamen AA, Farhat OF, Al-Dulaimi AA. Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self-powered UV detection application. Sens Actuators A Phys. 2017;263:166.
Yang C, Xiao F, Wang JD, Su XT. Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing. Colloid Interface. 2014;435:34.
Liu YL, Yang S, Lu Y, Podvalnaya NV, Chen W, Zakharova GS. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol. Appl Surf. 2015;359:114.
Li JY, Xiong SL, Xi BJ, Li XG, Qian YT. Synthesis of CuO perpendicularly cross-bedded microstructure via a precursor-based route. Cryst Growth Des. 2009;9(9):4108.
Guo WW, Zhou QL, Zhang J, Fu M, Radacsi N, Li YX. Hydrothermal synthesis of Bi-doped SnO2/rGO nanocomposites and the enhanced gas sensing performance to benzene. Sens Actuators B Chem. 2019;299:126959.
Agarwal S, Rai P, Gatell EN, Llobet E, Güell F, Kumar M, Awasthi K. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem. 2019;292:24.
Jin C, Kim H, An S, Lee C. Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation. Ceram Int. 2012;38(7):5973.
Verma M, Kumar V, Katoch A. Sputtering based synthesis of CuO nanoparticles and their structural, thermal and optical studies. Mater Sci Semicond Process. 2018;76:55.
Zhao Y, He XL, Li JP, Gao XG, Jia J. Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties. Sens Actuators B Chem. 2012;165(1):82.
Prabhu RR, Saritha AC, Shijeesh MR, Jayaraj MK. Fabrication of p-CuO/n-ZnO heterojunction diode via sol–gel spin coating technique. Mater Sci Eng B Solid-State Mater Adv Technol. 2017;220:82.
Lei Y, Li Y, Wan RD, Chen W, Zhou HW. Microwave synthesis and enhancement of thermoelectric performance in Hf xTi1−xNiSn0.97Sb0.03 half-Heusler bulks. Rare Met. 2019. 10.1007/s12598-019-01290-7. DOI: 10.1007/s12598-019-01290-7
Maisang W, Phuruangrat A, Thongtem S, Thongtem T. Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave–hydrothermal/solvothermal method. Rare Met. 2018;37(10):868.
Zhu J, Qian XF. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. Solid State Chem. 2010;183(7):1632.
Jung A, Cho S, Cho WJ, Lee KH. Morphology-controlled synthesis of CuO nano and microparticles using microwave irradiation. Korean J Chem Eng. 2012;29(2):243.
Wang H, Xu JZ, Zhu JJ, Chen HY. Preparation of CuO nanoparticles by microwave irradiation. Cryst Growth. 2002;244:88.
Wang CX, Zeng W, Zhang H, Li YG, Chen WG, Wang ZC. Synthesis and growth mechanism of CuO nanostructures and their gas sensing properties. Mater Sci Mater Electron. 2014;25(5):2041.
Yang C, Xiao F, Wang JD, Su XT. 3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors. Sens Actuators B Chem. 2015;207:177.
Ba NN, Zhu LJ, Zhang GZ, Li JF, Li HJ. Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties. Sens Actuators B Chem. 2016;227:142.
Farbod M, Meamar Ghaffari N, Kazeminezhad I. Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram Int. 2014;40:517.
Pal B, Mallick SS, Pal B. Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior than typical bulk powder. Colloids Surf A Physicochem Eng Asp. 2014;459:282.
Volanti DP, Felix AA, Orlandi MO, Whitfield G, Yang DJ, Longo E, Tuller HL, Varela JA. The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv Funct Mater. 2013;23(14):1759.
Yang C, Su XT, Xiao F, Jian JK, Wang JD. Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens Actuators B Chem. 2011;158(1):299.
Meng LY, Wang B, Ma MG, Lin KL. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem. 2016;1:63.
Mirzaei A, Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B Chem. 2016;237:749.
Zhang QB, Zhang KL, Xu DG, Yang GC, Huang H, Nie FD, Liu CM, Yang SH. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci. 2014;60(1):208.
Yu CQ, Wen M, Tong Z, Li SH, Yin YH, Liu XB, Li YS, Liang TX, Wu ZP, Dionysiou DD. Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts. Beilstein J Nanotechnol. 2020;11:407.
Zeng XM, Pelenovich V, Xing B, Rakhimov R, Zuo WB, Tolstogouzov A, Liu CS, Fu DJ, Xiao XH. Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment. Beilstein J Nanotechnol. 2020;11:383.
Zhang D, Zhang YQ, Fan Y, Luo N, Cheng ZX, Xu JQ. Micro-spherical ZnSnO3 material prepared by microwave-assisted method and its ethanol sensing properties. Chin Chem Lett. 2020.31:2087.
Wang Y, Sun JL, Li SS, Zhang YF, Xu CJ, Chen HY. Hydrothermal synthesis of flower-like MgCo2O4 porous microstructures as high-performance electrode material for asymmetric supercapacitors. J Alloys Compd. 2020;824:153939.
Yan XL, Michael E, Komarneni S, Brownson JR, Yan ZF. Microwave- and conventional-hydrothermal synthesis of CuS, SnS and ZnS: optical properties. Ceram Int. 2013;39(5):4757.
Chang Y, Zeng HC. Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons. Cryst Growth Des. 2004;4(2):397.
Kim HW, Kwon YJ, Mirzaei A, Kang SY, Choi MS, Bang JH, Kim SS. Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens Actuators B Chem. 2017;249:590.
Li YS, Yang WS. Microwave synthesis of zeolite membranes: a review. Memb Sci. 2008;316:3.
Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, Varela JA, Pizani PS, Souza AG. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloys Compd. 2008;459(1–2):537.
Akram M, Alshemary AZ, Butt FK, Goh YF, Ibrahim WAW, Hussain R. Continuous microwave flow synthesis and characterization of nanosized tin oxide. Mater Lett. 2015;160:146.
Sodeifian G, Behnood R. Application of microwave irradiation in preparation and characterization of CuO/Al2O3 nanocomposite for removing MB dye from aqueous solution. J Photochem Photobiol A Chem. 2017;342:25.
Al-Gaashani R, Radiman S, Tabet N, Daud AR. Effect of microwave power on the morphology and optical property of zinc oxide nano-structures prepared via a microwave-assisted aqueous solution method. Mater Chem Phys. 2011;125(3):846.
Sungpanich J, Thongtem T, Thongtem S. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method. Ceram Int. 2012;38(2):1051.
Chen G, Zhou HF, Ma W, Zhang D, Qiu GZ, Liu XH. Microwave-assisted synthesis and electrochemical properties of urchin-like CuO micro-crystals. Solid State Sci. 2011;13(12):2137.
Zi BY, Chen MP, Zhang YM, Rong Q, Hu JC, Wang HP, He JC, Zhou SQ, Zhang DM, Zhang J, Liu QJ. Morphology-dependent formaldehyde detection of porous copper oxide hierarchical microspheres at near-room temperature. Microporous Mesoporous Mater. 2020;302:110232.
Modenes-Junior MA, Zito CA, Perfecto TM, Volanti DP. Ethanol detection using composite based on reduced graphene oxide and CuO hierarchical structure under wet atmosphere. Mater Sci Eng B Solid-State Mater Adv Technol. 2019;248:114385.
Wu KD, Zhang C. Facile synthesis and ppb-level H2S sensing performance of hierarchical CuO microflowers assembled with nano-spindles. Mater Sci Mater Electron. 2020;31(10):7937.
Jyoti, Varma GD. Morphology-dependent room temperature NO2 detection of CuO nanostructure/rGO composites. Appl Phys A Mater Sci Process. 2020;126(2):1.
Bo Z, Wei X, Guo XZ, Yang HC, Mao S, Yan JH, Cen KF. SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor. Chem Phys Lett. 2020;750:137485.
Fan C, Sun FZ, Wang XM, Majidi M, Huang ZZ, Kumar P, Liu B. Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. Mater Sci. 2020;55(18):7702.
Yang C, Su XT, Wang JD, Cao XD, Wang SJ, Zhang L. Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties. Sens Actuators B Chem. 2013;185:159.
Park KR, Cho HB, Lee J, Song Y, Kim WB, Choa YH. Design of highly porous SnO2–CuO nanotubes for enhancing H2S gas sensor performance. Sens Actuators B Chem. 2020;302:127179.
Fei ZY, Lu P, Feng XZ, Sun B, Ji WJ. Geometrical effect of CuO nanostructures on catalytic benzene combustion. Catal Sci Technol. 2012;2(8):1705.
Dhakshinamoorthy J, Pullithadathil B. New insights towards electron transport mechanism of highly efficient p-type CuO (111) nanocuboids-based H2S gas sensor. Phys Chem C. 2016;120(7):4087.
Mishra AK, Nayak AK, Das AK, Pradhan D. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. Phys Chem C. 2018;122(21):11249.
Gao F, Pang H, Xu SP, Lu QY. Copper-based nanostructures: promising antibacterial agents and photocatalysts. Chem Commun. 2009;24:3571.
Shrestha KM, Sorensen CM, Klabunde KJ. Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. Phys Chem C. 2010;114(34):14368.
Hung NH, Thanh ND, Lam NH, Dien ND, Chien ND, Vuong DD. Preparation and ethanol sensing properties of flower-like cupric oxide hierarchical nanorods. Mater Sci Semicond Process. 2014;26(1):18.
Umar A, Alshahrani AA, Algarni H, Kumar R. CuO nanosheets as potential scaffolds for gas sensing applications. Sens Actuators B Chem. 2017;250:24.
Li R, Du JM, Luan YX, Xue YG, Zou H, Zhuang GS, Li ZH. Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens Actuators B Chem. 2012;168:156.
Nahas MN, Jilani A, Salah N. Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites. J Alloys Compd. 2016;680:350.
Moura AP, Cavalcante LS, Sczancoski JC, Stroppa DG, Paris EC, Ramirez AJ, Varela JA, Longo E. Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Adv Powder Technol. 2010;21(2):197.
Wang GX, Fu ZY, Wang TS, Lei WW, Sun P, Sui YM, Zou B. A rational design of hollow nanocages Ag@CuO–TiO2 for enhanced acetone sensing performance. Sens Actuators B Chem. 2019;295:70.
Ji HM, Miao XW, Wang L, Qian B, Yang G. Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries. Powder Technol. 2013;241:43.
Wang FX, Kalam A, Chang L, Xie D, Al-Shihri AS, Du GH. Rapid microwave-assisted synthesis of ball-in-ball CuO microspheres and its application as a H2O2 sensor. Mater Lett. 2013;92:96.
Sahoo RK, Das A, Samantaray K, Singh SK, Mane RS, Shin HC, Yun JM, Kim KH. Electrochemical glucose sensing characteristics of two-dimensional faceted and non-faceted CuO nanoribbons. CrystEngComm. 2019;21(10):1607.
Liu YQ, Zhang M, Wang FX, Pan GB. Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity. RSC Adv. 2012;2(30):11235.
Ayesh AI, Abu-Hani AFS, Mahmoud ST, Haik Y. Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens Actuators B Chem. 2016;231:593.
Rohilla D, Chaudhary S, Kaur N, Shanavas A. Dopamine functionalized CuO nanoparticles: a high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. Mater Sci Eng C. 2020;110:110724.
Min YL, Wang T, Chen YC. Microwave-assistant synthesis of ordered CuO micro-structures on Cu substrate. Appl Surf Sci. 2010;257(1):132.
Xie HJ, Zhu LJ, Zheng WJ, Zhang J, Gao FB, Wang Y. Microwave-assisted template-free synthesis of butterfly-like CuO through Cu2Cl(OH)3 precursor and the electrochemical sensing property. Solid State Sci. 2016;61:146.
Zhang YJ, Siu WO, Wang XL, Cui TY, Cui WB, Zhang Y, Zhang ZD. Hydrothermal synthesis of three-dimensional hierarchical CuO butterfly-like architectures. Eur J Inorg Chem. 2009;1:168.
Volanti DP, Orlandi MO, Andrés J, Longo E. Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm. 2010;12(6):1696.
Zheng JZ, Zhang WX, Lin ZQ, Wei C, Yang WZ, Dong PH, Yan YR, Hu SR. Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J Mater Chem B. 2016;4(7):1247.
Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.
Yang AJ, Li WJ, Chu JF, Wang DW, Yuan H, Zhu JG, Wang XH, Rong MZ. Enhanced sensing of sulfur hexafluoride decomposition components based on noble-metal-functionalized cerium oxide. Mater Des. 2020;187:108391.
Li TT, Shen YB, Zhong XX, Zhao SK, Li GD, Cui BY, Wei DZ, Wei KF. Effect of noble metal element on microstructure and NO2 sensing properties of WO3 nanoplates prepared from a low-grade scheelite concentrate. J Alloys Compd. 2020;818:152927.
Wang QJ, Wang C, Sun HB, Sun P, Wang YZ, Lin J, Lu GY. Microwave assisted synthesis of hierarchical Pd/SnO2 nanostructures for CO gas sensor. Sens Actuators B Chem. 2016;222:257.
Horprathum M, Srichaiyaperk T, Samransuksamer B, Wisitsoraat A, Eiamchai P, Limwichean S, Chananonnawathorn C, Aiempanakit K, Nuntawong N, Patthanasettakul V, Oros C, Porntheeraphat S, Songsiriritthigul P, Nakajima H, Tuantranont A, Chindaudom P. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering. ACS Appl Mater Interfaces. 2014;6(24):22051.
Soltani M, Jamali-Sheini F, Yousefi R. Effect of growth condition on structure and optical properties of hybrid Ag–CuO nanomaterials. Adv Powder Technol. 2016;27(5):2196.
Elazab HA, Sadek MA, El-Idreesy TT. Microwave-assisted synthesis of palladium nanoparticles supported on copper oxide in aqueous medium as an efficient catalyst for Suzuki cross-coupling reaction. Adsorpt Sci Technol. 2018;36(5–6):1352.
Yathisha RO, Arthoba Nayaka Y, Manjunatha P, Purushothama HT, Vinay MM, Basavarajappa KV. Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles. Phys E Low Dimens Syst Nanostruct. 2019;108:257.
Ponnar M, Thangamani C, Monisha P, Gomathi SS, Pushpanathan K. Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Appl Surf Sci. 2018;449:132.
Molavi R, Sheikhi MH. Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications. Mater Sci Semicond Process. 2020;106:104767.
Wang Y, Xue JL, Zhang XY, Si JQ, Liu Y, Ma LF, Ullah M, Ikram M, Li L, Shi KY. Novel intercalated CuO/black phosphorus nanocomposites: fabrication, characterization and NO2 gas sensing at room temperature. Mater Sci Semicond Process. 2020;110:1.
Seekaew Y, Phokharatkul D, Wisitsoraat A, Wongchoosuk C. Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene. Appl Surf Sci. 2017;404:357.
Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.
Sharma N, Sharma V, Sharma SK, Sachdev K. Gas sensing behaviour of green synthesized reduced graphene oxide (rGO) for H2 and NO. Mater Lett. 2019;236:444.
Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.
Sun DJ, Luo YF, Debliquy M, Zhang C. Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol. 2018;9(1):2832.
Wu KD, Luo YF, Li Y, Zhang C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J Nanotechnol. 2019;10:2516.
Chen N, Li XG, Wang XY, Yu J, Wang J, Tang ZN, Akbar SA. Enhanced room temperature sensing of Co3O4 intercalated reduced graphene oxide based gas sensors. Sens Actuators B Chem. 2013;188:902.
Shojaee M, Nasresfahani S, Sheikhi MH. Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens Actuators B Chem. 2018;254:457.
Abideen ZU, Kim JH, Mirzaei A, Kim HW, Kim SS. Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens Actuators B Chem. 2018;255:1884.
Hung CM, Dat DQ, Van Duy N, Van Quang V, Van Toan N, Van Hieu N, Hoa ND. Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Mater Res Bull. 2020;125:110810.
Lu LQ, Wang Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J Mater Chem. 2011;21(44):17916.
Wang ZY, Xiao Y, Cui XB, Cheng PF, Wang B, Gao Y, Li XW, Yang TL, Zhang T, Lu GY. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl Mater Interfaces. 2014;6(6):3888.
Zhou XY, Shi JJ, Liu Y, Su QM, Zhang J, Du GH. Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J Alloys Compd. 2014;615:390.
Meng H, Yang W, Ding K, Feng L, Guan YF. Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. Mater Chem A. 2015;3(3):1174.
Yin L, Wang HB, Li L, Li H, Chen DL, Zhang R. Microwave-assisted preparation of hierarchical CuO@rGO nanostructures and their enhanced low-temperature H2S-sensing performance. Appl Surf Sci. 2019;476:107.
Zhang DZ, Jiang CX, Liu JJ, Cao YH. Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens Actuators B Chem. 2017;247:875.
Yin L, Chen DL, Hu MX, Shi HY, Yang DW, Fan BB, Shao G, Zhang R, Shao GS. Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance. Mater Chem A. 2014;2(44):18867.
Zhou XY, Zhang J, Su QM, Shi JJ, Liu Y, Du GH. Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim Acta. 2014;125:615.
Kiruba MS, Jose AS, Prajwal K, Chowdhury P, Barshilia HC. Sputter deposited p-NiO/n-SnO2 porous thin film heterojunction based NO2 sensor with high selectivity and fast response. Sens Actuators B Chem. 2020;310:127830.
Javanmardi S, Nasresfahani S, Sheikhi MH. Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater Res Bull. 2019;118:110496.
Poloju M, Jayababu N, Ramana Reddy MV. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater Sci Eng B Solid-State Mater Adv Technol. 2018;227:61.
Kumaresan N, Sinthiya MMA, Ramamurthi K, Ramesh Babu R, Sethuraman K. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab J Chem. 2020;13(2):3910.
Ashok CH, Venkateswara RK. Microwave-assisted synthesis of CuO/TiO2 nanocomposite for humidity sensor application. Mater Sci Mater Electron. 2016;27(8):8816.
Ren FM, Gao LP, Yuan YW, Zhang Y, Alqrni A, Al-Dossary OM, Xu JQ. Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens Actuators B Chem. 2016;223:914.