C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 (2012).
J. Kuczynski, D.J. Boday, Bio-based materials for high-end electronics applications. Int. J. Sustain. Dev. World Ecol. 19, 557 (2012).
J.T. Wertz, T.C. Mauldin, D.J. Boday, Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications. ACS Appl. Mater. Interfaces. 6, 18511 (2014).
L. Costes, F. Laoutid, F. Khelifa, G. Rose, S. Brohez, C. Delvosalle, P. Dubois, Cellulose/ phosphorus combinations for sustainable fire retarded polylactide. European Polymer Journal 74, 218 (2016).
C. Reti, M. Casetta, S. Duquesne, S. Bourbigot, R. Delobel, Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 19, 628 (2008).
J.X. Feng, S.P. Su, J. Zhu, An intumescent flame retardant system using β‐cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 22, 1115 (2011).
J. Alongi, F. Cuttica, A. Di Blasio, F. Carosio, G. Malucelli, Intumescent features of nucleic acids and proteins. Thermochim. Acta 591, 31 (2014).
A. De Chirico, M. Armanini, P. Chini, G. Cioccolo, F. Provasoli, G. Audisio, Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79, 139 (2003).
L. Ferry, G. Dorez, A. Taguet, B. Otazaghine, J.M. Lopez-Cuesta, Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym. Degrad. Stab. 113, 135 (2015).
B. Prieur, M. Meub, M. Wittemann, R. Klein, S. Bellayer, G. Fontaine, S. Bourbigot, Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym. Degrad. Stab. 127, 32 (2016).
J. Zhang, E. Fleury, Y. Chen, M.A. Brook, Flame retardant lignin-based silicone composites, RSC Adv. 5, 103907 (2015).
L. Costes, F. Laoutid, M. Aguedo, A. Richel, S. Brohez, C. Delvosalle, Ph. Dubois, Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA. European Polymer Journal 84, 652 (2016).
A. A. Alalykin, R. L. Vesnin, and D. A. Kozulin, Preparation of modified hydrolysis lignin and its use for filling epoxy polymers and enhancing their flame resistance. Russian Journal of Applied Chemistry 84, 1616 (2011).
A. Cayla, F. Rault, S. Giraud, F. Salaün, V. Fierro, A. Celzard, PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8, 331 (2016).
R. Zhang, X. Xiao, Q. Tai, H. Huang, Y. Hu, Modification of lignin and its application as char agent in intumescent flame‐retardant poly(lactic acid). Polymer Engineering and Science 52, 2620 (2012).
Y. Yu, S. Fu, P. Song, X. Luo, Y. Jin, F. Lu, Q. Wu, J. Ye, Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polymer Degradation and Stability 97, 541 (2012).
Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar, R. Nagarajan, Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochimica Acta. 605, 77 (2015).
H. Tributsch, S. Fiechter, The material strategy of fire-resistant tree barks. WIT Trans. Built Env. 97, 43 (2008).
M. Cowan, Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564 (1999).
K. Freudenberg, Die Chemie der Naturlichen Gerbstoffe, Springer-Verlag, Berlin (1920)
K.T. Chung, T.Y. Wong, C.I. Wei, Y.W. Huang, Y. Lin, Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 38, 421 (1998).
N. Brosse, A. Pizzi, Bio-based Wood Adhesives: Preparation, Characterization, and Testing, Chap 8: Tannins for Wood, Adhesives, Foams and Composites, Zhongqi He (Eitor), CRC Press Taylor & Francis Group, February 14, 2017.
B.N. Jang, M. Costache, C.A. Wilkie, The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polym. 46, 10678 (2005).
F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. 63, 100 (2009).
S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 22, 2283 (2007).
L. Costes, F. Laoutid, S. Brohez, Ch. Delvosalle, Ph. Dubois, Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. European Polymer Journal 94, 270 (2017).
L. Costes, F. Laoutid, L. Dumazert, J-M. Lopez-Cuesta, S. Brohez, C. Delvosalle, P. Dubois, Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polymer Degradation and Stability 119, 217 (2015).
B. Schartel, T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire Mater. 31, 327 (2007).
G. Dorez, A. Taguet, L. Ferry, J-M. Lopez Cuesta, Phosphorous compounds as flame retardants for polybutylene succinate/flax biocomposite: Additive versus reactive route. Polym. Degrad. Stab. 102, 152 (2014).
J. Li, B. Li, X. Zhang, R. Su, The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase. Polym. Degrad. Stab. 72, 493 (2001).
L. Falcão, M.E.M. Araújo, J. Cult. Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. Herit. 14, 499 (2013).
K. Nakagawa, M. Sugita, Spectroscopic characterisation and molecular weight of vegetable tannin. J. Soc. Leather Technol. Chem. 83, 261 (1999).
A. Edelmann, B. Lendl, Toward the optical tongue: flow-through sensing of tannin-protein interactions based on FTIR spectroscopy.J. Am. Chem. Soc. 124, 14741 (2002).
K. Fernández, E. Agosin, Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. J. Agric. Food Chem. 55, 7294 (2007).