Wool, R. P. Self-Healing Materials: A Review. Soft Matter 2008, 4, 400-418, 10.1039/b711716g
Wu, D. Y.; Meure, S.; Solomon, D. Self-Healing Polymeric Materials: A Review of Recent Developments. Prog. Polym. Sci. 2008, 33, 479-522, 10.1016/j.progpolymsci.2008.02.001
Cho, S. H.; White, S. R.; Braun, P. V. Self-Healing Polymer Coatings. Adv. Mater. 2009, 21, 645-649, 10.1002/adma.200802008
Hamilton, A. R.; Sottos, N. R.; White, S. R. Self-Healing of Internal Damage in Synthetic Vascular Materials. Adv. Mater. 2010, 22, 5159-5163, 10.1002/adma.201002561
Lee, M. W.; An, S.; Lee, C.; Liou, M.; Yarin, A. L.; Yoon, S. S. Self-Healing Transparent Core-shell Nanofiber Coatings for Anti-Corrosive Protection. J. Mater. Chem. A 2014, 2, 7045-7053, 10.1039/c4ta00623b
Yuan, D.; Bonab, V. S.; Patel, A.; Manas-Zloczower, I. Self-Healing Epoxy Coatings with Enhanced Properties and Facile Processability. Polymer 2018, 147, 196-201, 10.1016/j.polymer.2018.06.017
Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Self-Healing of Chemical Gels Cross-Linked by Diarylbibenzofuranone-Based Trigger-Free Dynamic Covalent Bonds at Room Temperature. Angew. Chem., Int. Ed. 2012, 51, 1138-1142, 10.1002/anie.201104069
Ying, H.; Zhang, Y.; Cheng, J. Dynamic Urea Bond for the Design of Reversible and Self-Healing Polymers. Nat. Commun. 2014, 5, 3218, 10.1038/ncomms4218
Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Adv. Mater. 2012, 24, 3975-3980, 10.1002/adma.201201928
Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. PH-Induced Metal-Ligand Cross-Links Inspired by Mussel Yield Self-Healing Polymer Networks with near-Covalent Elastic Moduli. Proc. Natl. Acad. Sci. 2011, 108, 2651-2655, 10.1073/pnas.1015862108
Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-Healing and Thermoreversible Rubber from Supramolecular Assembly. Nature 2008, 451, 977, 10.1038/nature06669
Vahedi, V.; Pasbakhsh, P.; Piao, C. S.; Seng, C. E. A Facile Method for Preparation of Self-Healing Epoxy Composites: Using Electrospun Nanofibers as Microchannels. J. Mater. Chem. A 2015, 3, 16005-16012, 10.1039/C5TA02294K
Hia, I. L.; Chan, E.-S.; Chai, S.-P.; Pasbakhsh, P. A Novel Repeated Self-Healing Epoxy Composite with Alginate Multicore Microcapsules. J. Mater. Chem. A 2018, 6, 8470-8478, 10.1039/C8TA01783B
Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromolecules 2011, 44, 2536-2541, 10.1021/ma2001492
Hillewaere, X. K. D.; Du Prez, F. E. Fifteen Chemistries for Autonomous External Self-Healing Polymers and Composites. Prog. Polym. Sci. 2015, 49-50, 121-153, 10.1016/j.progpolymsci.2015.04.004
Hernández, M.; Grande, A. M.; Dierkes, W.; Bijleveld, J.; van der Zwaag, S.; García, S. J. Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio. ACS Sustainable Chem. Eng. 2016, 4, 5776-5784, 10.1021/acssuschemeng.6b01760
Lu, Y.-X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making Insoluble Polymer Networks Malleable via Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 8424-8427, 10.1021/ja303356z
Keller, M. W.; White, S. R.; Sottos, N. R. A Self-Healing Poly(Dimethyl Siloxane) Elastomer. Adv. Funct. Mater. 2007, 17, 2399-2404, 10.1002/adfm.200700086
Oehlenschlaeger, K. K.; Mueller, J. O.; Brandt, J.; Hilf, S.; Lederer, A.; Wilhelm, M.; Graf, R.; Coote, M. L.; Schmidt, F. G.; Barner-Kowollik, C. Adaptable Hetero Diels-Alder Networks for Fast Self-Healing under Mild Conditions. Adv. Mater. 2014, 26, 3561-3566, 10.1002/adma.201306258
Hillewaere, X. K. D.; Teixeira, R. F. A.; Nguyen, L.-T. T.; Ramos, J. A.; Rahier, H.; Du Prez, F. E. Autonomous Self-Healing of Epoxy Thermosets with Thiol-Isocyanate Chemistry. Adv. Funct. Mater. 2014, 24, 5575-5583, 10.1002/adfm.201400580
Wang, W.; Xu, L.; Li, X.; Lin, Z.; Yang, Y.; An, E. Self-Healing Mechanisms of Water Triggered Smart Coating in Seawater. J. Mater. Chem. A 2014, 2, 1914-1921, 10.1039/C3TA13389C
Du, Y.; Qiu, W.-Z.; Wu, Z. L.; Ren, P.-F.; Zheng, Q.; Xu, Z.-K. Water-Triggered Self-Healing Coatings of Hydrogen-Bonded Complexes for High Binding Affinity and Antioxidative Property. Adv. Mater. Interfaces 2016, 3, 1600167, 10.1002/admi.201600167
Xia, N. N.; Xiong, X. M.; Wang, J.; Rong, M. Z.; Zhang, M. Q. A Seawater Triggered Dynamic Coordinate Bond and Its Application for Underwater Self-Healing and Reclaiming of Lipophilic Polymer. Chem. Sci. 2016, 7, 2736-2742, 10.1039/C5SC03483C
Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Surface-Initiated Self-Healing of Polymers in Aqueous Media. Nat. Mater. 2014, 13, 867, 10.1038/nmat4037
Sariola, V.; Pena-Francesch, A.; Jung, H.; Çetinkaya, M.; Pacheco, C.; Sitti, M.; Demirel, M. C. Segmented Molecular Design of Self-Healing Proteinaceous Materials. Sci. Rep. 2015, 5, 13482, 10.1038/srep13482
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat-or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Adv. Mater. 2014, 26, 3938-3942, 10.1002/adma.201400317
Kim, C.; Ejima, H.; Yoshie, N. Polymers with Autonomous Self-Healing Ability and Remarkable Reprocessability under Ambient Humidity Conditions. J. Mater. Chem. A 2018, 6, 19643-19652, 10.1039/C8TA04769C
Korich, A. L.; Iovine, P. M. Boroxine Chemistry and Applications: A Perspective. Dalton Trans. 2010, 39, 1423-1431, 10.1039/B917043J
Nishiyabu, R.; Kubo, Y.; James, T. D.; Fossey, J. S. Boronic Acid Building Blocks: Tools for Self Assembly. Chem. Commun. 2011, 47, 1124-1150, 10.1039/C0CC02921A
Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Roomerature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters. Macromolecules 2015, 48, 2098-2106, 10.1021/acs.macromol.5b00210
Lai, J.-C.; Mei, J.-F.; Jia, X.-Y.; Li, C.-H.; You, X.-Z.; Bao, Z. A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Adv. Mater. 2016, 28, 8277-8282, 10.1002/adma.201602332
Delpierre, S.; Willocq, B.; De Winter, J.; Dubois, P.; Gerbaux, P.; Raquez, J.-M. Dynamic Iminoboronate-Based Boroxine Chemistry for the Design of Ambient Humidity-Sensitive Self-Healing Polymers. Chem.-Eur. J. 2017, 23, 6730-6735, 10.1002/chem.201700333
Bao, C.; Jiang, Y.-J.; Zhang, H.; Lu, X.; Sun, J. Roomerature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Adv. Funct. Mater. 2018, 28, 1800560, 10.1002/adfm.201800560
Garcia, S. J. Effect of Polymer Architecture on the Intrinsic Self-Healing Character of Polymers. Eur. Polym. J. 2014, 53, 118-125, 10.1016/j.eurpolymj.2014.01.026
Ogden, W. A.; Guan, Z. Recyclable, Strong, and Highly Malleable Thermosets Based on Boroxine Networks. J. Am. Chem. Soc. 2018, 140, 6217-6220, 10.1021/jacs.8b03257
Wu, J.; Cai, L.-H.; Weitz, D. A. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Adv. Mater. 2017, 29, 1702616, 10.1002/adma.201702616
Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis. Science 2008, 319, 1370-1374, 10.1126/science.1153307
Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect. Macromolecules 2011, 44, 6827-6835, 10.1021/ma201502k
Urban, M. W. Self-Healing Polymers. From Principles to Applications. Edited by Wolfgang H. Binder. Angew. Chem., Int. Ed. 2014, 53, 3775, 10.1002/anie.201310868
Shan, L.; Verghese, K. N. E.; Robertson, C. G.; Reifsnider, K. L. Effect of Network Structure of Epoxy DGEBA-Poly(Oxypropylene)Diamines on Tensile Behavior. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2815-2819, 10.1002/(SICI)1099-0488(19991001)37:19<2815:AID-POLB11>3.0.CO;2-T
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965-968, 10.1126/science.1212648
Liu, W.; Schmidt, D. F.; Reynaud, E. Catalyst Selection, Creep, and Stress Relaxation in High-Performance Epoxy Vitrimers. Ind. Eng. Chem. Res. 2017, 56, 2667-2672, 10.1021/acs.iecr.6b03829
Chen, Y.; Guan, Z. Multivalent Hydrogen Bonding Block Copolymers Self-Assemble into Strong and Tough Self-Healing Materials. Chem. Commun. 2014, 50, 10868-10870, 10.1039/C4CC03168G
Ochi, M.; Takahashi, R.; Terauchi, A. Phase Structure and Mechanical and Adhesion Properties of Epoxy/Silica Hybrids. Polymer 2001, 42, 5151-5158, 10.1016/S0032-3861(00)00935-6
Tang, J.; Wan, L.; Zhou, Y.; Pan, H.; Huang, F. Strong and Efficient Self-Healing Adhesives Based on Dynamic Quaternization Cross-Links. J. Mater. Chem. A 2017, 5, 21169-21177, 10.1039/C7TA06650C
Kahraman, R.; Sunar, M.; Yilbas, B. Influence of Adhesive Thickness and Filler Content on the Mechanical Performance of Aluminum Single-Lap Joints Bonded with Aluminum Powder Filled Epoxy Adhesive. J. Mater. Process. Technol. 2008, 205, 183-189, 10.1016/j.jmatprotec.2007.11.121
Ambrose, R. J. Adhesion and Adhesives-Science and Technology: Kinloch, A. J., Ed.; Chapman and Hall: New York, London, 1988.
Mostovoy, S.; Ripling, E. J. The Fracture Toughness and Stress Corrosion Cracking Characteristics of an Anhydride-Hardened Epoxy Adhesive. J. Appl. Polym. Sci. 1971, 15, 641-659, 10.1002/app.1971.070150311
Chao, A.; Negulescu, I.; Zhang, D. Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules 2016, 49, 6277-6284, 10.1021/acs.macromol.6b01443
Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent Advances in Dynamic Covalent Chemistry. Chem. Soc. Rev. 2013, 42, 6634-6654, 10.1039/c3cs60044k
Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V; Veiros, L. F.; Cordeiro, C.; Gois, P. M. P. Iminoboronates: A New Strategy for Reversible Protein Modification. J. Am. Chem. Soc. 2012, 134, 10299-10305, 10.1021/ja303436y
McKee, J. R.; Hietala, S.; Seitsonen, J.; Laine, J.; Kontturi, E.; Ikkala, O. Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties. ACS Macro Lett. 2014, 3, 266-270, 10.1021/mz400596g
Cudjoe, E.; Khani, S.; Way, A. E.; Hore, M. J. A.; Maia, J.; Rowan, S. J. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites. ACS Cent. Sci. 2017, 3, 886-894, 10.1021/acscentsci.7b00215
Jorfi, M.; Roberts, M. N.; Foster, E. J.; Weder, C. Physiologically Responsive, Mechanically Adaptive Bio-Nanocomposites for Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5, 1517-1526, 10.1021/am303160j
Wang, J.; Xie, J.; Zong, C.; Han, X.; Ji, H.; Zhao, J.; Lu, C. Surface Treatment-Assisted Switchable Transfer Printing on Polydimethylsiloxane Films. J. Mater. Chem. C 2016, 4, 3467-3476, 10.1039/C6TC00685J
Huh, D.; Mills, K. L.; Zhu, X.; Burns, M. A.; Thouless, M. D.; Takayama, S. Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation. Nat. Mater. 2007, 6, 424, 10.1038/nmat1907
Park, J.; Kim, H. S.; Han, A. Micropatterning of Poly(Dimethylsiloxane) Using a Photoresist Lift-off Technique for Selective Electrical Insulation of Microelectrode Arrays. J. Micromech. Microeng. 2009, 19, 065016, 10.1088/0960-1317/19/6/065016
Tiaw, K. S.; Goh, S. W.; Hong, M.; Wang, Z.; Lan, B.; Teoh, S. H. Laser Surface Modification of Poly(ϵ-Caprolactone) (PCL) Membrane for Tissue Engineering Applications. Biomaterials 2005, 26, 763-769, 10.1016/j.biomaterials.2004.03.010
Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Adv. Mater. 2012, 24, 5284-5318, 10.1002/adma.201201386
Cai, G.; Wang, J.; Qian, K.; Chen, J.; Li, S.; Lee, P. S. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. Adv. Sci. 2017, 4, 1600190, 10.1002/advs.201600190
Nambiar, S.; Yeow, J. T. W. Conductive Polymer-Based Sensors for Biomedical Applications. Biosens. Bioelectron. 2011, 26, 1825-1832, 10.1016/j.bios.2010.09.046
Wang, T.; Zhang, Y.; Liu, Q.; Cheng, W.; Wang, X.; Pan, L.; Xu, B.; Xu, H. A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Adv. Funct. Mater. 2018, 28, 1705551, 10.1002/adfm.201705551
Trung, T. Q.; Lee, N.-E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338-4372, 10.1002/adma.201504244
Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite. ACS Nano 2014, 8, 5154-5163, 10.1021/nn501204t
Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J.-C.; Liu, L.; Li, C.-H.; Yan, X.; Liu, C.; Tok, J. B.-H.; Jia, X.; Bao, Z. An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Adv. Mater. 2018, 30, 1801435, 10.1002/adma.201801435
Wren, T. A. L.; Yerby, S. A.; Beaupré, G. S.; Carter, D. R. Mechanical Properties of the Human Achilles Tendon. Clin. Biomech. 2001, 16, 245-251, 10.1016/S0268-0033(00)00089-9
Epro, G.; Mierau, A.; Doerner, J.; Luetkens, J. A.; Scheef, L.; Kukuk, G. M.; Boecker, H.; Maganaris, C. N.; Brüggemann, G.-P.; Karamanidis, K. The Achilles Tendon Is Mechanosensitive in Older Adults: Adaptations Following 14 Weeks versus 1.5 Years of Cyclic Strain Exercise. J. Exp. Biol. 2017, 220, 1008-1018, 10.1242/jeb.146407
Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.; Wagner, M. F.-X. Piezoresistive Characterization of Multi-Walled Carbon Nanotube-Epoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18-26, 10.1016/j.compscitech.2015.11.012