Significant modification of the surface morphology of polylactide (PLA) and PLA-halloysite nanocomposites in the presence of N, N'-ethylenebis(stearamide)upon thermal treatment
Pluta, M.; Bojda, Joanna; Makowski, T.et al.
2020 • In eXPRESS Polymer Letters, 12, p. 1155-1168
Bonnaud, Leila ; Université de Mons > Unités externes > Materia Nova ASBL
Dubois, Philippe ; Université de Mons > Faculté des Sciences > Service des Matériaux Polymères et Composites
Language :
English
Title :
Significant modification of the surface morphology of polylactide (PLA) and PLA-halloysite nanocomposites in the presence of N, N'-ethylenebis(stearamide)upon thermal treatment
Publication date :
27 May 2020
Journal title :
eXPRESS Polymer Letters
ISSN :
1788-618X
Publisher :
Budapesti Muszaki Egyetem, Department of Polymer Engineering, Hungary
Volume :
12
Pages :
1155-1168
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S816 - Matériaux Polymères et Composites
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Nampoothiri K. M., Nair N. R., John R. P.: An overview of the recent developments in polylactide (PLA) re-search. Bioresource Technology, 101, 8493–8501 (2010). https://doi.org/10.1016/j.biortech.2010.05.092
Drumright R. E., Gruber P. R., Henton D. E.: Polylactic acid technology. Advanced Materials, 12, 1841–1846 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
Ren J.: Biodegradable poly(lactic acid): Synthesis, modification, processing and applications. Tsinghua University Press, Beijing, Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-17596-1_2
Piorkowska E.: Overview of biobased polymers. Advances in Polymer Science, 283, 1–35 (2019). https://doi.org/10.1007/12_2019_52
Dorgan J. R., Lehermeier H. J., Palade L-I., Cicero J.: Polylactides: Properties and prospects of an environ-mentally benign plastic from renewable resources. Macromolecular Symposia, 175, 55–66 (2001). https://doi.org/10.1002/1521-3900(200110)175:1<55::AID-MASY55>3.0.CO;2-K
Masutani K., Kimura Y.: Present situation and future perspectives of poly(lactic acid). Advances in Polymer Science, 279, 1–25 (2018). https://doi.org/10.1007/12_2016_16
Kühnert I., Spörer Y., Brünig H., Tran N. H. A., Rudolph N.: Processing of poly(lactic acid). Advances in Polymer Science, 282, 1–33 (2018). https://doi.org/10.1007/12_2017_30
Malinconico M., Vink E. T. H., Cain A.: Applications of poly(lactic acid) in commodities and specialties. Advances in Polymer Science, 282, 35–50 (2018). https://doi.org/10.1007/12_2017_29
Bouzouita A., Notta-Cuvier D., Raquez J-M., Lauro F., Dubois P.: Poly(lactic acid)-based materials for auto-motive applications. Advances in Polymer Science, 282, 177–219 (2018). https://doi.org/10.1007/12_2017_10
Kowalczyk M., Piorkowska E., Dutkiewicz S., Sowin-ski P.: Toughening of polylactide by blending with a novel random aliphatic–aromatic copolyester. European Polymer Journal, 59, 59–68 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.002
Krishnan S., Pandey P., Mohanty S., Nayak S. K.: Toughening of polylactic acid: An overview of research progress. Polymer-Plastics Technology and Engineer-ing, 55, 1623–1652 (2016). https://doi.org/10.1080/03602559.2015.1098698
Alias N. F., Ismail H.: An overview of toughening poly-lactic acid by an elastomer. Polymer-Plastics Technology and Materials, 58, 1399–1422 (2019). https://doi.org/10.1080/25740881.2018.1563118
Jacobsen S., Fritz H. G.: Plasticizing polylactide—The effect of different plasticizers on the mechanical prop-erties. Polymer Engineering and Science, 39, 1303– 1310 (1999). https://doi.org/10.1002/pen.11517
Murariu M., Da Silva Ferreira A., Pluta M., Bonnaud L., Alexandre M., Dubois P.: Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related perform-ances. European Polymer Journal, 44, 3842–3852 (2008). https://doi.org/10.1016/j.eurpolymj.2008.07.055
Arias V., Höglund A., Odelius K., Albertsson A-C.: Polylactides with ‘green’ plasticizers: Influence of iso-mer composition. Journal of Applied Polymer Science, 130, 2962–2970 (2013). https://doi.org/10.1002/app.39446
Pluta M., Piorkowska E.: Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 41, 209–218 (2015). https://doi.org/10.1016/j.polymertesting.2014.11.011
Pluta M., Piorkowska E.: Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 46, 79–87 (2015). https://doi.org/10.1016/j.polymertesting.2015.06.014
Zubrowska A., Piorkowska E., Bojda J.: Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. Journal of Polymers and the Envi-ronment, 26, 145–151 (2018). https://doi.org/10.1007/s10924-016-0920-2
Pluta M.: Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 44, 3392– 3405 (2006). https://doi.org/10.1002/polb.20957
Pluta M., Jeszka J. K., Boiteux G.: Polylactide/mont-morillonite nanocomposites: Structure, dielectric, visco-elastic and thermal properties. European Polymer Jour-nal, 43, 2819–2835 (2007). https://doi.org/10.1016/j.eurpolymj.2007.04.009
Raquez J-M., Habibi Y., Murariu M., Dubois P.: Poly-lactide (PLA)-based nanocomposites. Progress in Polymer Science, 38, 1504–1542 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.014
Piekarska K., Sowinski P., Piorkowska E., Ul Haque M. M., Pracella M.: Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Composites Part A: Applied Science and Manu-facturing, 82, 34–41 (2016). https://doi.org/10.1016/j.compositesa.2015.11.019
Wu D., Wu L., Zhang M., Zhao Y.: Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polymer Degradation and Stability, 93, 1577–1584 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.001
Wang Y., Lin C-S.: Preparation and characterization of maleated polylactide-functionalized graphite oxide nano-composites. Journal of Polymer Research, 21, 334/1– 334/14 (2014). https://doi.org/10.1007/s10965-013-0334-y
Pluta M., Murariu M., Alexandre M., Galeski A., Dubois P.: Polylactide compositions. The influence of ageing on the structure, thermal and viscoelastic properties of PLA/calcium sulfate composites. Polymer Degradation and Stability, 93, 925–931 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.02.001
Pluta M., Murariu M., Dechief A-L., Bonnaud L., Galeski A., Dubois P.: Impact-modified polylactide– calcium sulfate composites: Structure and properties. Applied Polymer of Science, 125, 4302–4315 (2012). https://doi.org/10.1002/app.36562
Piekarska K., Piorkowska E., Bojda J.: The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polymer Testing, 62, 203–209 (2017). https://doi.org/10.1016/j.polymertesting.2017.06.025
Murariu M., Doumbia A., Bonnaud L., Dechief A-L., Paint Y., Ferreira M., Campagne C., Devaux E., Dubois P.: High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use prop-erties. Biomacromolecules, 12, 1762–1771 (2011). https://doi.org/10.1021/bm2001445
Busolo M. A., Lagaron J. M.: Antimicrobial biocom-posites of melt-compounded polylactide films containing silver-based engineered clays. Journal of Plastic Film and Sheeting, 29, 290–305 (2013). https://doi.org/10.1177/8756087913478601
Zhu A., Diao H., Rong Q., Cai A.: Preparation and properties of polylactide–silica nanocomposites. Journal of Applied Polymer Science, 116, 2866–2873 (2010). https://doi.org/10.1002/app.31786
Vuluga Z., Corobea M. C., Elizetxea C., Ordonez M., Ghiurea M., Raditoiu V., Nicolae C. A., Florea D., Iorga M., Somoghi R., Trica B.: Morphological and tribolog-ical properties of PMMA/halloysite nanocomposites. Polymers, 10, 816/1–816/23 (2018). https://doi.org/10.3390/polym10080816
Sabatini V., Taroni T., Rampazzo R., Bompieri M., Maggioni D., Meroni D., Ortenzi M. A., Ardizzone S.: PA6 and halloysite nanotubes composites with im-proved hydrothermal ageing resistance: Role of filler physicochemical properties, functionalization and dispersion technique. Polymers, 12, 211/1–211/19 (2020). https://doi.org/10.3390/polym12010211
Sharma S., Singh A. A., Majumdar A., Butola B. S.: Harnessing the ductility of polylactic acid/ halloysite nanocomposites by synergistic effects of impact modi-fier and plasticiser. Composites Part B: Engineering, 188, 107845/1–107845/10 (2020). https://doi.org/10.1016/j.compositesb.2020.107845
Wang S., Daelemans L., Fiorio R., Gou M., D’hooge D. R., De Clerck K., Cardon L.: Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate). Polymers, 11, 1529/1–1529/13 (2019). https://doi.org/10.3390/polym11091529
Harris A. M., Lee E. C.: Improving mechanical performance of injection molded PLA by controlling crys-tallinity. Journal of Applied Polymer Science, 107, 2246–2255 (2008). https://doi.org/10.1002/app.27261
Murariu M., Dechief A-L., Paint Y., Peeterbroeck S., Bonnaud L., Dubois P.: Polylactide (PLA)–halloysite nanocomposites: Production, morphology and key-properties. Journal of Polymers and the Environment, 20, 932–943 (2012). https://doi.org/10.1007/s10924-012-0488-4
Gorrasi G., Pantani R., Murariu M., Dubois P.: PLA/ halloysite nanocomposite films: Water vapor barrier properties and specific key characteristics. Macromol-ecular Materials and Engineering, 299, 104–115 (2014). https://doi.org/10.1002/mame.201200424
Murariu M., Dechief A-L., Ramy-Ratiarison R., Paint Y., Raquez J-M., Dubois P.: Recent advances in production of poly(lactic acid) (PLA) nanocomposites: A versatile method to tune crystallization properties of PLA. Nano-composites, 1, 71–82 (2015). https://doi.org/10.1179/2055033214Y.0000000008
Therias S., Murariu M., Dubois P.: Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 145, 60–69 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.06.008
Pluta M., Bojda J., Piorkowska E., Murariu M., Bon-naud L., Dubois P.: The effect of halloysite nanotubes and N,N′-ethylenebis(stearamide) on the properties of polylactide nanocomposites with amorphous matrix. Polymer Testing, 61, 35–45 (2017). https://doi.org/10.1016/j.polymertesting.2017.04.016
Pluta M., Bojda J., Piorkowska E., Murariu M., Bonnaud L., Dubois P.: The effect of halloysite nanotubes and N,N′-thylenebis(stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polymer Testing, 64, 83–91 (2017). https://doi.org/10.1016/j.polymertesting.2017.09.013
Nicolini K. P., Fukamachi C. R. B., Wypych F., Mangrich A. S.: Dehydrated halloysite intercalated mechano-chemically with urea: Thermal behavior and structural aspects. Journal of Colloid Interface Science, 338, 474– 479 (2009). https://doi.org/10.1016/j.jcis.2009.06.058
Du M., Guo B., Jia D.: Newly emerging applications of halloysite nanotubes: A review. Polymer International, 59, 574–582 (2010). https://doi.org/10.1002/pi.2754
Liu M., Zhang Y., Zhou C.: Nanocomposites of hal-loysite and polylactide. Applied Clay Science, 75–76, 52–59 (2013). https://doi.org/10.1016/j.clay.2013.02.019
De Silva R. T., Pasbakhsh P., Goh K. L., Chai S-P., Chen J.: Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48, 3705–3717 (2014). https://doi.org/10.1177/0021998313513046
Nanthananon P., Seadan M., Pivsa-Art S., Suttirueng-wong S.: Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide. IOP Conference Series: Materials Science and Engineering, 87, 01206/1– 01206/7 (2015). https://doi.org/10.1088/1757-899X/87/1/012067
Cai Y-H.: Influence of ethylene bis-stearamide on crystallization behaviour of poly(L-lactide). Asian Journal of Chemistry, 25, 6219–6221 (2013). https://doi.org/10.14233/ajchem.2013.14326
Saeidlou S., Huneault M. A., Li H., Park C. B.: Poly(lactic acid) crystallization. Progress in Polymer Science, 37, 1657–1677 (2012). https://doi.org/10.1016/j.progpolymsci.2012.07.005
Zhang J., Yin H-M., Chen C., Hsiao B. S., Yuan G-P., Li Z-M.: High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 48, 7374–7383 (2013). https://doi.org/10.1007/s10853-013-7552-x
Sarasua J-R., Prud’homme R. E., Wisniewski M., Le Borgne A., Spassky N.: Crystallization and melting behavior of polylactides. Macromolecules, 31, 3895–3905 (1998). https://doi.org/10.1021/ma971545p
Zuza E., Ugartemendia J. M., Lopez A., Meaurio E., Lejardi A., Sarasua J-R.: Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer, 49, 4427–4432 (2008). https://doi.org/10.1016/j.polymer.2008.08.012
Righetti M. C.: Amorphous fractions of poly(lactic acid). Advances in Polymer Science, 279, 195–234 (2018). https://doi.org/10.1007/12_2016_14
Tham W. L., Poh B. T., Ishak Z. A. M., Chow W. S.: Thermal behaviors and mechanical properties of hal-loysite nanotube-reinforced poly(lactic acid) nanocom-posites. Journal of Thermal Analysis and Calorimetry, 118, 1639–1647 (2014). https://doi.org/10.1007/s10973-014-4062-2
Pietrzak L., Piorkowska E., Galeski A., Bojda J., Sowinski P.: Modification of syndiotactic polypropy-lene with nano-calcium carbonate and halloysite. International Polymer Processing, 33, 314–321 (2018). https://doi.org/10.3139/217.3521
Terzopoulou Z., Papageorgiou D. G., Papageorgiou G. Z., Bikiaris D. N.: Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly(ε-caprolactone). Journal of Materials Sci-ence, 53, 6519–6541 (2018). https://doi.org/10.1007/s10853-018-1993-1
Papageorgiou G. Z., Achilias D. S., Nanaki S., Beslikas T., Bikiaris D.: PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochimica Acta, 511, 129–139 (2010). https://doi.org/10.1016/j.tca.2010.08.004
Stein R. S., Rhodes M. B.: Photographic light scattering by polyethylene films. Journal of Applied Physics, 31, 1873–1884 (1960). https://doi.org/10.1063/1.1735468
Bartczak Z., Galeski A.: Homogeneous nucleation in polypropylene and its blends by small-angle light scat-tering. Polymer, 31, 2027–2038 (1990). https://doi.org/10.1016/0032-3861(90)90072-7
Rosen M., Franklin L. C.: Process for the interconver-sion of crystalline forms of ethylene bis-stearamide, U.S. Patent 4248792A, USA (1981).
Thierry A., Lotz B. A.: Epitaxial crystallization of poly-mers: Means and issues. in ‘Handbook of polymer crys-tallization’ (eds: Piorkowska E., Rutledge G. C.) Wiley, Hoboken, 237–286 (2013). https://doi.org/10.1002/9781118541838.ch8
Xin R., Zhang J., Sun X., Li H., Qiu Z., Yan S.: Epitax-ial effects on polymer crystallization. Advances in Polymer Science, 277, 55–94 (2017). https://doi.org/10.1007/12_2015_329
An Y-K., Jiang S-D., Yan S-K., Sun J-R., Chen X-S.: Crystallization behavior of polylactide on highly oriented polyethylene thin films. Chinese Journal of Polymer Science, 29, 513–519 (2011). https://doi.org/10.1007/s10118-010-1028-0
Tu C., Jiang S., Li H., Yan S.: Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate. Macromolecules, 46, 5215– 5222 (2013). https://doi.org/10.1021/ma400743k
Guan G., Zhang J., Sun X., Li H., Yan S., Lotz B.: Oriented overgrowths of poly(L-lactide) on oriented iso-tactic polypropylene: A sequence of soft and hard epi-taxies. Macromolecular Rapid Communication, 39, 1800353/1–1800353/6 (2018). https://doi.org/10.1002/marc.201800353
Jin Y., Rogunova M., Hiltner A., Baer E., Nowacki R., Galeski A., Piorkowska E.: Structure of polypropylene crystallized in confined nanolayers. Journal of Polymer Science Part B Polymer Physics, 42, 3380–3396 (2004). https://doi.org/10.1002/polb.20211
Bernal-Lara T. E., Masirek R., Hiltner A., Baer E., Piorkowska E., Galeski A.: Morphology studies of mul-tilayered HDPE/PS system. Journal of Applied Polymer Science, 99, 597–612 (2006). https://doi.org/10.1002/app.22178
Langhe D. S., Hiltner A., Baer E.: Melt crystallization of syndiotactic polypropylene in nanolayer confinement impacting structure. Polymer, 52, 5879–5889 (2011). https://doi.org/10.1016/j.polymer.2011.10.018
Ma Y., Hu W., Reiter G.: Lamellar crystal orientations biased by crystallization kinetics in polymer thin films. Macromolecules, 39, 5159–5164 (2006). https://doi.org/10.1021/ma060798s
Wittmann J. C., Lotz B.: Epitaxial crystallization of polymers on organic and polymeric substrates. Progress in Polymer Science, 15, 909–948 (1990). https://doi.org/10.1016/0079-6700(90)90025-V
Meng Y., Wang M., Tang M., Hong G., Gao J., Chen Y.: Preparation of robust superhydrophobic halloysite clay nanotubes via mussel-inspired surface modifica-tion. Applied Sciences, 7, 1129–1146 (2017). https://doi.org/10.3390/app7111129
Alakrach A. M., Noriman N. Z., Dahham O. S., Hamzah R., Alsaadi M. A., Shayfull Z., Idrus S. Z. S.: Chemical and hydrophobic properties of PLA/HNTs-ZrO2 bio-nanocomposites. Journal of Physics: Conference Series, 1019, 012065/1–012065/6 (2018). https://doi.org/10.1088/1742-6596/1019/1/012065
Nizar M. M., Hamzah M. S. A., Razak S. I. A., Nayan N. H. M.: Thermal stability and surface wettability studies of polylactic acid/halloysite nanotube nanocom-posite scaffold for tissue engineering studies. IOP Conference Series: Materials Science and Engineering, 318, 012006/1–012006/8 (2018). https://doi.org/10.1088/1757-899X/318/1/012006
Law K-Y.: Definitions for hydrophilicity, hydrophobic-ity, and superhydrophobicity: Getting the basics right. The Journal of Physical Chemistry Letters, 5, 686–688 (2014). https://doi.org/10.1021/jz402762h
Bhushan B., Nosonovsky M.: The rose petal effect and the modes of superhydrophobicity. Philosophical Trans-actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 4713–4728 (2010). https://doi.org/10.1098/rsta.2010.0203