Barreiro, C., Gonzalez-Lavado, E., Patek, M. & Martin, J. F. (2004). Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat-shockinduced promoters. J Bacteriol 186, 4813-4817.
Berthet, F. X., Lagranderie, M., Gounon, P., Laurent-Winter, C., Ensergueix, D., Chavarot, P., Thouron, F., Maranghi, E., Pelicic, V. & other authors (1998). Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282, 759-762.
Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S. S., Kremer, L., Chen, B., Chan, J., Porcelli, S. A., Kobayashi, K. & other authors (2007). Deletion of kasB in Mycobacterium tuberculosis causes loss of acidfastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104, 5157-5162.
Bonato, V. L., Lima, V. M., Tascon, R. E., Lowrie, D. B. & Silva, C. L. (1998). Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infect Immun 66, 169-175.
Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578-586.
Cappello, F., Czarnecka, A. M., La Rocca, G., Di Stefano, A., Zummo, G. & Macario, A. J. (2007). Hsp60 and Hspl0 as antitumor molecular agents. Cancer Biol Ther 6, 487-489.
Cappello, F., de Macario, E. C., Marasa, L., Zummo, G. & Macario, A. J. (2008). Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7, 801-809.
Cehovin, A., Coates, A. R., Hu, Y., Riffo-Vasquez, Y., Tormay, P., Botanch, C., Altare, F. & Henderson, B. (2010). Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun 78, 3196-3206.
Cheng, M. Y., Hartl, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L. & Horwich, A. L. (1989). Mitochondrial heat-shock protein Hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620-625.
Constant, P., Perez, E., Malaga, W., Laneelle, M. A., Saurel, O., Daffé, M. & Guilhot, C. (2002). Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277, 38148-38158.
Daffé, M., Laneelle, M. A., Asselineau, C., Levy-Frebault, V. & David, H. (1983). Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol (Paris) 134B, 241-256.
De Bruyn, J., Bosmans, R., Turneer, M., Weckx, M., Nyabenda, J., Van Vooren, J. P., Falmagne, P., Wiker, H. G. & Harboe, M. (1987). Purification, partial characterization, and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect Immun 55, 245-252.
De Bruyn, J., Soetaert, K., Buyssens, P., Calonne, I., De Coene, J. L., Gallet, X., Brasseur, R., Wattiez, R., Falmagne, P. & other authors (2000). Evidence for specific and non-covalent binding of lipids to natural and recombinant Mycobacterium bovis BCG hsp60 proteins, and to the Escherichia coli homologue GroEL. Microbiology 146, 1513-1524.
Donà, V., Rodrigue, S., Dainese, E., Palu, G., Gaudreau, L., Manganelli, R. & Provvedi, R. (2008). Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor sE in Mycobacterium tuberculosis. J Bacteriol 190, 5963-5971.
Dosanjh, N. S., Rawat, M., Chung, J. H. & Av-Gay, Y. (2005). Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiol Lett 249, 87-94.
Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. (1989). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171, 1379-1385.
Fisher, M. T. (1998). GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase. Biochemistry 63, 382-398.
Fontán, P. A., Voskuil, M. I., Gomez, M., Tan, D., Pardini, M., Manganelli, R., Fattorini, L., Schoolnik, G. K. & Smith, I. (2009). The Mycobacterium tuberculosis sigma factor sB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol 191, 5628-5633.
Galamba, A., Soetaert, K., Wang, X. M., De Bruyn, J., Jacobs, P. & Content, J. (2001). Disruption of adhC reveals a large duplication in the Mycobacterium smegmatis mc(2)155 genome. Microbiology 147, 3281-3294.
Gao, L. Y., Laval, F., Lawson, E. H., Groger, R. K., Woodruff, A., Morisaki, J. H., Cox, J. S., Daffé, M. & Brown, E. J. (2003). Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49, 1547-1563.
Gengenbacher, M., Rao, S. P., Pethe, K. & Dick, T. (2010). Nutrientstarved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156, 81-87.
Grimaud, R. & Toussaint, A. (1998). Assembly of both the head and tail of bacteriophage Mu is blocked in Escherichia coli groEL and groES mutants. J Bacteriol 180, 1148-1153.
He, H., Hovey, R., Kane, J., Singh, V. & Zahrt, T. C. (2006). MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol 188, 2134-2143.
Hendrix, R. W. & Tsui, L. (1978). Role of the host in virus assembly: cloning of the Escherichia coli groE gene and identification of its protein product. Proc Natl Acad Sci U S A 75, 136-139.
Hickey, T. B., Thorson, L. M., Speert, D. P., Daffé, M. & Stokes, R. W. (2009). Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77, 3389-3401.
Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. & Furtak, K. (1993). Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909-917.
Horwich, A. L., Farr, G. W. & Fenton, W. A. (2006). GroEL-GroESmediated protein folding. Chem Rev 106, 1917-1930.
Horwich, A. L., Fenton, W. A., Chapman, E. & Farr, G. W. (2007). Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23, 115-145.
Hu, Y., Kendall, S., Stoker, N. G. & Coates, A. R. (2004). The Mycobacterium tuberculosis sigJ gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiol Lett 237, 415-423.
Hu, Y., Henderson, B., Lund, P. A., Tormay, P., Ahmed, M. T., Gurcha, S. S., Besra, G. S. & Coates, A. R. (2008). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76, 1535-1546.
Huang, C. Y., Chen, C. A., Lee, C. N., Chang, M. C., Su, Y. N., Lin, Y. C., Hsieh, C. Y. & Cheng, W. F. (2007). DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol Oncol 107, 404-412.
Hümpel, A., Gebhard, S., Cook, G. M. & Berney, M. (2010). The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192, 2491-2502.
Huygen, K., Van Vooren, J. P., Turneer, M., Bosmans, R., Dierckx, P. & De Bruyn, J. (1988). Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol 27, 187-194.
Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Deck, R. R., DeWitt, C. M., Orme, I. M., Baldwin, S. & other authors (1996). Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 2, 893-898.
Jungblut, P. R., Schaible, U. E., Mollenkopf, H. J., Zimny-Arndt, U., Raupach, B., Mattow, J., Halada, P., Lamer, S., Hagens, K. & Kaufmann, S. H. (1999). Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33, 1103-1117.
Kalpana, G. V., Bloom, B. R. & Jacobs, W. R., Jr (1991). Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A 88, 5433-5437.
Kaufmann, S. H. (1990). Heat shock proteins and the immune response. Immunol Today 11, 129-136.
Kaufmann, S. H., Vath, U., Thole, J. E., Van Embden, J. D. & Emmrich, F. (1987). Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol 17, 351-357.
Kendall, S. L., Movahedzadeh, F., Rison, S. C., Wernisch, L., Parish, T., Duncan, K., Betts, J. C. & Stoker, N. G. (2004). The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84, 247-255.
Kong, T. H., Coates, A. R., Butcher, P. D., Hickman, C. J. & Shinnick, T. M. (1993). Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90, 2608-2612.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Laval, F., Laneelle, M. A., Deon, C., Monsarrat, B. & Daffé, M. (2001). Accurate molecular mass determination of mycolic acids by MALDITOF mass spectrometry. Anal Chem 73, 4537-4544.
Leroy, B., Roupie, V., Noël-Georis, I., Rosseels, V., Walravens, K., Govaerts, M., Huygen, K. & Wattiez, R. (2007). Antigen discovery: a postgenomic approach to paratuberculosis diagnosis. Proteomics 7, 1164-1176.
Lewthwaite, J. C., Coates, A. R., Tormay, P., Singh, M., Mascagni, P., Poole, S., Roberts, M., Sharp, L. & Henderson, B. (2001). Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69, 7349-7355.
Lozes, E., Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Vandenbussche, P., Van Vooren, J. P., Drowart, A. & other authors (1997). Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15, 830-833.
Lund, P. A. (2001). Microbial molecular chaperones. Adv Microb Physiol 44, 93-140.
Målen, H., Berven, F. S., Fladmark, K. E. & Wiker, H. G. (2007). Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7, 1702-1718.
Manganelli, R., Voskuil, M. I., Schoolnik, G. K. & Smith, I. (2001). The Mycobacterium tuberculosis ECF sigma factor sE: role in global gene expression and survival in macrophages. Mol Microbiol 41, 423-437.
Manganelli, R., Provvedi, R., Rodrigue, S., Beaucher, J., Gaudreau, L. & Smith, I. (2004). Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186, 895-902.
Mastroleo, F., Leroy, B., Van Houdt, R., s'Heeren, C., Mergeay, M., Hendrickx, L. & Wattiez, R. (2009). Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gelbased peptides fractionation methods. J Proteome Res 8, 2530-2541.
McKinney, J. D., Höner zu Bentrup, K., Muñoz-Elías, E. J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J. C., Jacobs, W. R., Jr & Russell, D. G. (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735-738.
Missiakas, D. & Raina, S. (1998). The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28, 1059-1066.
Mollenkopf, H. J., Jungblut, P. R., Raupach, B., Mattow, J., Lamer, S., Zimny-Arndt, U., Schaible, U. E. & Kaufmann, S. H. (1999). A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20, 2172-2180.
Monahan, I. M., Betts, J., Banerjee, D. K. & Butcher, P. D. (2001). Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147, 459-471.
Munk, M. E., De Bruyn, J., Gras, H. & Kaufmann, S. H. (1994). The Mycobacterium bovis 32-kilodalton protein antigen induces human cytotoxic T-cell responses. Infect Immun 62, 726-728.
Muñoz-Elías, E. J. & McKinney, J. D. (2005). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638-644.
Noël-Georis, I., Vallaeys, T., Chauvaux, R., Monchy, S., Falmagne, P., Mergeay, M. & Wattiez, R. (2004). Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4, 151-179.
Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., Jr & Hatfull, G. F. (2005). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123, 861-873.
Ortalo-Magné, A., Dupont, M. A., Lemassu, A., Andersen, A. B., Gounon, P. & Daffé, M. (1995). Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141, 1609-1620.
Peetermans, W. E., Raats, C. J., Langermans, J. A. & van Furth, R. (1994). Mycobacterial heat-shock protein 65 induces proinflammatory cytokines but does not activate human mononuclear phagocytes. Scand J Immunol 39, 613-617.
Peirs, P., Lefèvre, P., Boarbi, S., Wang, X. M., Denis, O., Braibant, M., Pethe, K., Locht, C., Huygen, K. & Content, J. (2005). Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun 73, 1898-1902.
Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Jr, Gicquel, B. & Guilhot, C. (1997). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94, 10955-10960.
Prakken, B. J., Roord, S., Ronaghy, A., Wauben, M., Albani, S. & van Eden, W. (2003). Heat shock protein 60 and adjuvant arthritis: a model for T cell regulation in human arthritis. Springer Semin Immunopathol 25, 47-63.
Qamra, R., Mande, S. C., Coates, A. R. & Henderson, B. (2005). The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 85, 385-394.
Rafidinarivo, E., Laneelle, M. A., Montrozier, H., Valero-Guillen, P., Astola, J., Luquin, M., Prome, J. C. & Daffé, M. (2009). Trafficking pathways of mycolic acids: structures, origin, mechanism of formation, and storage form of mycobacteric acids. J Lipid Res 50, 477-490.
Riffo-Vasquez, Y., Spina, D., Page, C., Tormay, P., Singh, M., Henderson, B. & Coates, A. (2004). Effect of Mycobacteriumtuberculosis chaperonins on bronchial eosinophilia and hyper-responsiveness in a murine model of allergic inflammation. Clin Exp Allergy 34, 712-719.
Roberts, D. M., Liao, R. P., Wisedchaisri, G., Hol, W. G. & Sherman, D. R. (2004). Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279, 23082-23087.
Rosenkrands, I., King, A., Weldingh, K., Moniatte, M., Moertz, E. & Andersen, P. (2000a). Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21, 3740-3756.
Rosenkrands, I., Weldingh, K., Jacobsen, S., Hansen, C. V., Florio, W., Gianetri, I. & Andersen, P. (2000b). Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21, 935-948.
Saibil, H. R. (2000). Conformational changes studied by cryo-electron microscopy. Nat Struct Biol 7, 711-714.
Sigler, P. B., Xu, Z., Rye, H. S., Burston, S. G., Fenton, W. A. & Horwich, A. L. (1998). Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67, 581-608.
Spector, T. (1978). Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem 86, 142-146.
Stewart, G. R., Wernisch, L., Stabler, R., Mangan, J. A., Hinds, J., Laing, K. G., Young, D. B. & Butcher, P. D. (2002). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148, 3129-3138.
Tang, Y. C., Chang, H. C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., Hartl, F. U. & Hayer-Hartl, M. (2006). Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903-914.
Tanghe, A., D'Souza, S., Rosseels, V., Denis, O., Ottenhoff, T. H., Dalemans, W., Wheeler, C. & Huygen, K. (2001). Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 69, 3041-3047.
Thole, J. E., van Schooten, W. C., Keulen, W. J., Hermans, P. W., Janson, A. A., de Vries, R. R., Kolk, A. H. & van Embden, J. D. (1988). Use of recombinant antigens expressed in Escherichia coli K-12 to map B-cell and T-cell epitopes on the immunodominant 65-kilodalton protein of Mycobacterium bovis BCG. Infect Immun 56, 1633-1640.
van Eden, W., Thole, J. E., van der Zee, R., Noordzij, A., van Embden, J. D., Hensen, E. J. & Cohen, I. R. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331, 171-173.
van Eden, W., Hogervorst, E. J., van der Zee, R., van Embden, J. D., Hensen, E. J. & Cohen, I. R. (1989). The mycobacterial 65 kD heatshock protein and autoimmune arthritis. Rheumatol Int 9, 187-191.
Veyron-Churlet, R., Guerrini, O., Mourey, L., Daffé, M. & Zerbib, D. (2004). Protein-protein interactions within the fatty acid synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol Microbiol 54, 1161-1172.
Voskuil, M. I., Schnappinger, D., Visconti, K. C., Harrell, M. I., Dolganov, G. M., Sherman, D. R. & Schoolnik, G. K. (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198, 705-713.
Xu, Z., Horwich, A. L. & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750.