Polgar, L.M., van Duin, M., Broekhuis, A.A., Picchioni, F., Use of diels–alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products?. Macromolecules 48 (2015), 7096–7105.
Chino, K., Ashiura, M., Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 34 (2001), 9201–9204.
Cordier1, P., Tournilhac, F., Souliè-Ziakovic, C., Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451 (2008), 977–980.
Montarnal, D., Capelot, M., Tournilhac, F., Leibler, L., Silica-like malleable materials from permanent organic networks. Science 334 (2011), 965–968.
Basu, D., Das, A., Stöckelhuber, K.W., Jehnichen, D., Formanek, P., Sarlin, E., Vuorinen, J., Heinrich, G., Evidence for an in situ developed polymer phase in ionic elastomers. Macromolecules 47 (2014), 3436–3450.
Ibarra, L., Rodríguez, A., Mora-Barrantes, I., Crosslinking of carboxylated nitrile rubber (XNBR) induced by coordination with anhydrous copper sulfate. Polym. Int. 58 (2009), 218–226.
Mandal, U.K., Tripathy, D.K., De, S.K., Dynamic mechanical spectroscopic studies on plasticization of an ionic elastomer based on carboxylated nitrile rubber by ammonia. Polymer 37 (1996), 5739–5742.
Antony, P., De, S.K., Ionic thermoplastic elastomers: a review. J. Macromol. Sci. Polym. Rev. 41:1–2 (2001), 41–77.
Rajeshbabu, R., Gohs, U., Naskar, K., Mondal, M., Wagenknecht, U., Heinrich, G., Electron‐induced reactive processing of poly(propylene)/ethylene–octene copolymer blends: a novel route to prepare thermoplastic vulcanizates. Macromol. Mater. Eng. 297:7 (2012), 659–669.
Banerjee, S.S., Janke, A., Gohs, U., Fery, A., Heinrich, G., Some nanomechanical properties and degree of branching of electron beam modified polyamide 6. Eur. Polym. J. 88 (2017), 221–230.
Mondal, M., Gohs, U., Wagenknecht, U., Heinrich, G., Polypropylene/Natural rubber thermoplastic vulcanizates by eco-friendly and sustainable electron induced reactive processing. Radiat. Phys. Chem. 88 (2013), 74–81.
Erxleben, A., Structures and properties of Zn(II) coordination polymers. Coord. Chem. Rev. 246 (2003), 203–228.
Shen, F., Li, H., Wu, C., Crosslinking induced by in‐situ coordination in acrylonitrile butadiene rubber/poly(vinyl chloride) alloy, filled with anhydrous copper sulfate particles. J. Polym. Sci., Polym. Phys. Ed. 44:2 (2006), 378–386.
Zakharov, N.D., Vulcanization of some synthetic rubbers without sulphur–IV. the effect of the nitrile-group content on the thermal vulcanization of butadiene-nitrile rubbers Vysokomol. Soyed 5:8 (1963), 1190–1195.
Zakharov, N.D., Kuznetsova, V.A., Vysokomol. Soyed. 5th report in the series ‘’Nonsulphur vulcanization of certain synthetic rubbers’’ A10:2 (1968), 331–338.
Wu, S., Fang, S., Tang, Z., Liu, F., Guo, B., Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Mater. Des., 192, 2020, 108756.
Mou, H., Shen, F., Shi, Q., Liu, Y., Wu, C., Guo, W., A novel nitrile butadiene rubber/zinc chloride composite: coordination reaction and miscibility. Eur. Polym. J. 48:4 (2012), 857–865.
Dechant, J., Ultrarotspektroskopische Untersuchungen an Polymeren. 1972, Akademie Verlag, Berlin.
Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, third ed., 2004, John Wiley & Sons, Ltd., Chichester.
Flory, P.J., Rehner, J., Statistical mechanics of cross‐linked polymer networks II. Swelling. J. Chem. Phys. 11 (1943), 512–521.
Chapter 5 - Liquid Transport through Elastomers, Author Links Open Overlay Panel, Thomasukutty Jose, Soney C.George, 2018, Transport Properties of Polymeric Membranes, Elsevier, 71–89.
Desai, H., Hendrikse, K.G., Woolard, C.D., Vulcanization of polychloroprene rubber. I. A revised cationic mechanism for ZnO crosslinking. J. Appl. Polym. Sci. 105 (2007), 865–876.
Zil'berman, E.N., The reactions of nitrile-containing polymers. 1986 Russ. Chem. Rev. 55:1 (1986), 62–78 Translated from Uspekhi Khimii, 55.
Cairns, T.L., Larchar, A.W., McKusick, B.C., The trimerization of nitriles at high pressures. J. Am. Chem. Soc. 74:22 (1952), 5633–5636.
V. M. Litvinov and P. P. De Spectroscopy Of Rubbers and Rubbery Materials, Shropshire, Rapra Technology Ltd, UK, P. 113.
Imoto, M., Otsu, T., Nakabayashi, M., Vinyl polymerization. LXIX. The polymerization of a complex of acrylonitrile with zinc chloride. Makromol. Chem. 65 (1963), 194–201.
Socrates, G., Infrared and Raman Characteristic Group Frequencies, third ed., 2004, John Wiley & Sons Ltd., 130.
Furukawa, J., Onouchi, Y., Inagaki, S., Okamoto, H., Rubber elasticity at very large elongation. Polym. Bull. 6 (1982), 381–387.
Hagen, R., Salmén, L., Stenberg, B., Effects of the type of crosslink on viscoelastic properties of natural rubber. J. Polym. Sci. B Polym. Phys. 34 (1996), 1997–2006.
Roberts, A.D., Natural Rubber Science and Technology. 1988, Oxford University Press, Oxford, UK xvii + 1136.
Makrocka-Rydzyk, M., Nowaczyk, G., Głowinkowski, S., Jurga, S., Dynamic mechanical study of molecular dynamics in ethylene–norbornene copolymers. Polymer 51 (2010), 908–912.
Pakula, T., A Model of cooperative motions in dense polymer systems by means of closed dynamic loops in Permanent and Transient Networks. Prog. Colloid Polym. Sci. 75 (1987), 171–178.
Yagihara, S., Hikichi, K., Cooperative interaction on side-chain motion of poly (α-amino acid). Polym. J. 14 (1982), 233–240.
Saalwächter, K., A heuer, chain dynamics in elastomers as investigated by proton multiple-quantum NMR. Macromolecules 39 (2006), 3291–3303.
Smith, R.F., Boothroyd, S.C., Thompson, R.L., Khosravi, E., A facile route for rubber breakdown via cross metathesis reactions. Green Chem., 18, 2016, 3448.
Mou, H.Y., Cao, Y.Y., Shen, F., Yuan, X.F., Wu, C.F., Study on the non-liquid-phase coordination crosslinking reaction of acrylonitrile-butadiene rubber/copper sulfate composites. Acta Polym. Sin. 9 (2008), 910–913.
Clark, A.G., Salcedo Montero, M., Govinna, N.D., Lounder, S.J., Asatekin, A., Cebe, P., Relaxation dynamics of blends of PVDF and zwitterionic copolymer by dielectric relaxation spectroscopy. J. Polym. Sci. 58:9 (2020), 1311–1324.
Cheng, Z.Y., Gross, S., Su, J., Zhang, Q.M., Pressure‐temperature study of dielectric relaxation of a polyurethane elastomer. J. Polym. Sci. B Polym. Phys. 37:10 (1999), 983–990.
Braunstein, J., Solution chemistry in liquid mixtures of inorganic salts with water. Inorg. Chim. Acta. 2 (1968), 19–30, 10.1016/0073-8085(68)80012-9.
Zil'berman, Y.N., Frenkel’, R. Sh, Vorontsova, N.B., Pitkevich, N.A., Kuz'mina, E.A., Mechanism of vulcanization of butadine-nitrile rubber by zinc chloride. Polym. Sci. 15 (1973), 1288–1291.
Chiang, M.Y.M., Fernandez-Garcia, M., Relation of swelling and Tg depression to the apparent free volume of a particle‐filled, epoxy‐based adhesive. J. Appl. Polym. Sci. 87 (2003), 1436–1444.
Young, R.J., Lovell, P.A., An Introduction to Polymers. 1991, Chapman & Hall, London.
Steinerová, D., Kalendová, A., Machotová, J., Pejchalová, M., Environmentally friendly water-based self-crosslinking acrylate dispersion containing magnesium nanoparticles and their films exhibiting antimicrobial properties. Coatings, 10(4), 2020, 340.
Schaumann, G.E., LeBoeuf, E.J., Glass transitions in Peat: their relevance and the impact of water. Environ. Sci. Technol. 39 (2005), 800–806.
Pairoh, G., Tipvarakarnkoon, T., Thermal analysis of lipid crystallization and water ice on coconut milk emulsions: effect of NaCl concentrations. J. Med. Bioeng. 2:3 (2013), 191–195.
House, J.E., Dunbar, C.D., A DSC study of the phase transitions in (CH3)3NH[CdCl3]. Thermochim. Acta 204 (1992), 213–219.