Abdelwahab, M.A., Flynn, A., Sen Chiou, B., Imam, S., Orts, W., Chiellini, E., Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 97 (2012), 1822–1828, 10.1016/j.polymdegradstab.2012.05.036.
Afrose, M.F., Masood, S.H., Iovenitti, P., Nikzad, M., Sbarski, I., Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog. Addit. Manuf. 1 (2016), 21–28, 10.1007/s40964-015-0002-3.
Alhnan, M.A., Okwuosa, T.C., Sadia, M., Wan, K.W., Ahmed, W., Arafat, B., Emergence of 3D printed dosage forms: opportunities and challenges. Pharm. Res., 2016, 10.1007/s11095-016-1933-1.
Arrieta, M.P., Castro-López, M.D.M., Rayón, E., Barral-Losada, L.F., López-Vilariño, J.M., López, J., González-Rodríguez, M.V., Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J. Agric. Food Chem. 62 (2014), 10170–10180, 10.1021/jf5029812.
ASTM, 2014. ASTM D638 − 14. Standard Test Method for Tensile Properties of Plastics. Annu. B. ASTM Stand. 1–20. https://doi.org/10.1520/D0638-14.
ASTM D1238, 2013. ASTM D1238 – Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Annu. B. ASTM Stand. 1–16. doi: 10.1520/D1238-13.
Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., Wintermantel, E., Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90 (2003), 1731–1738, 10.1002/app.12549.
Bhushan, B., Caspers, M., An overview of additive manufacturing (3D printing) for microfabrication. Microsyst. Technol. 23 (2017), 1117–1124, 10.1007/s00542-017-3342-8.
Cantrell, J., Rohde, S., Damiani, D., Gurnani, R., Disandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., Ifju, P., Experimental characterization of the mechanical properties of 3d-printed abs and polycarbonate parts. Univ. Florida, 89–105, 2011, 10.1007/978-3-319-41600-7_11.
Carneiro, O.S., Silva, A.F., Gomes, R., Fused deposition modeling with polypropylene. Mater. Des. 83 (2015), 768–776, 10.1016/j.matdes.2015.06.053.
Chacón, J., Caminero, M., García-Plaza, E., Núñez, P., Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124 (2017), 143–157, 10.1016/j.matdes.2017.03.065.
Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K., A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. 012109 IOP Conf. Ser. Mater. Sci. Eng., 114, 2016, 10.1088/1757-899X/114/1/012109.
Costa, S.F., Duarte, F.M., Covas, J.A., Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245 (2017), 167–179, 10.1016/j.jmatprotec.2017.02.026.
Farah, S., Anderson, D.G., Langer, R., Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv. Drug Deliv. Rev., 367–392, 2016, 10.1016/j.addr.2016.06.012.
Fehri, S., Cinelli, P., Coltelli, M.-B., Anguillesi, I., Lazzeri, A., Thermal properties of plasticized poly (Lactic Acid) (PLA) containing nucleating agent. Int. J. Chem. Eng. Appl. 7 (2016), 85–88, 10.7763/IJCEA.2016.V7.548.
Fuenmayor, E., Forde, M., Healy, A.V., Devine, D.M., Lyons, J.G., McConville, C., Major, I., Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics, 10, 2018, 10.3390/pharmaceutics10020044.
Goyanes, A., Robles Martinez, P., Buanz, A., Basit, A.W., Gaisford, S., Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm. 494 (2015), 657–663, 10.1016/j.ijpharm.2015.04.069.
Greco, A., Ferrari, F., Maffezzoli, A., Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. J. Therm. Anal. Calorim., 1–7, 2018, 10.1007/s10973-018-7059-4.
Jani, R., Patel, D., Hot melt extrusion: an industrially feasible approach for casting orodispersible film. Asian J. Pharm. Sci. 10 (2015), 292–305, 10.1016/j.ajps.2015.03.002.
Jin, Y., Wan, Y., Zhang, B., Liu, Z., Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J. Mater. Process. Technol. 240 (2017), 233–239, 10.1016/j.jmatprotec.2016.10.003.
Kamaly, N., Yameen, B., Wu, J., Farokhzad, O.C., Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 10.1021/acs.chemrev.5b00346.
Kantaros, A., Karalekas, D., Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater. Des. 50 (2013), 44–50, 10.1016/j.matdes.2013.02.067.
Kotlinski, J., Mechanical properties of commercial rapid prototyping materials. Rapid Prototyp. J. 20 (2014), 499–510, 10.1108/RPJ-06-2012-0052.
Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., Zhang, Y., Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One 13 (2018), 1–15, 10.1371/journal.pone.0193520.
Martin, O., Avérous, L., Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer (Guildf) 42 (2001), 6209–6219, 10.1016/S0032-3861(01)00086-6.
Mohamed, O.A., Masood, S.H., Bhowmik, J.L., Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement 81 (2016), 174–196, 10.1016/j.measurement.2015.12.011.
Panda, B.N., Shankhwar, K., Garg, A., Jian, Z., Performance evaluation of warping characteristic of fused deposition modelling process. Int. J. Adv. Manuf. Technol. 88 (2017), 1799–1811, 10.1007/s00170-016-8914-8.
Patil, H., Tiwari, R.V., Repka, M.A., Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 17 (2015), 20–42, 10.1208/s12249-015-0360-7.
Pfeifer, T., Koch, C., Van Hulle, L., Optimization of the FDM TM additive manufacturing process. Proc. SPE ANTEC TM Indianap, 2016, 22–29.
Skowyra, J., Pietrzak, K., Alhnan, M.A., Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 68 (2015), 11–17, 10.1016/j.ejps.2014.11.009.
Södergård, A., Stolt, M., Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27 (2002), 1123–1163, 10.1016/S0079-6700(02)00012-6.
Torres, J., Cole, M., Owji, A., DeMastry, Z., Gordon, A.P., An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp. J. 22 (2016), 387–404, 10.1108/RPJ-07-2014-0083.
Turner, B.N., Strong, R., Gold, S.A., A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 20 (2014), 192–204, 10.1108/RPJ-01-2013-0012.
Tymrak, B.M., Kreiger, M., Pearce, J.M., Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58 (2014), 242–246, 10.1016/j.matdes.2014.02.038.
Verreck, G., The Influence of Plasticizers in Hot-Melt Extrusion. Hot-Melt Extrus. Pharm. Appl., 93–112, 2012, 10.1002/9780470711415.ch5.
Wang, S., Capoen, L., D'hooge, D.R., Cardon, L., D'hooge, D.R., Cardon, L., Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials?. Plast. Rubber Compos. 47 (2018), 9–16, 10.1080/14658011.2017.1397308.
Wang, Y., Qin, Y., Zhang, Y., Yuan, M., Li, H., Yuan, M., Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int. J. Biol. Macromol. 67 (2014), 58–63, 10.1016/j.ijbiomac.2014.02.048.