Gupta, A.P., Kumar, V., New emerging trends in synthetic biodegradable polymers – polylactide: A critique. Eur. Polym. J. 43:10 (2007), 4053–4074 http://dx.doi.org/10.1016/j.eurpolymj.2007.06.045.
Murariu, M., Dubois, P., PLA composites: from production to properties. Adv. Drug Deliv. Rev. 107 (2016), 17–46 http://dx.doi.org/10.1016/j.addr.2016.04.003.
Auras, R., Harte, B., Selke, S., An overview of polylactides as packaging materials. Macromol. Biosci. 4:9 (2004), 835–864, 10.1002/mabi.200400043.
Hamad, K., Kaseem, M., Yang, H.W., Deri, F., Ko, Y.G., Properties and medical applications of polylactic acid: a review. Express Polym. Lett. 9:5 (2015), 435–455, 10.3144/expresspolymlett.2015.42.
Pang, X., Zhuang, X., Tang, Z., Chen, X., Polylactic acid (PLA): research, development and industrialization. Biotechnol. J. 5:11 (2010), 1125–1136, 10.1002/biot.201000135.
Vink, E.T.H., Rábago, K.R., Glassner, D.A., Springs, B., O'Connor, R.P., Kolstad, J., Gruber, P.R., The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol. Biosci. 4:6 (2004), 551–564, 10.1002/mabi.200400023.
Murariu, M., Laoutid, F., Dubois, P., Fontaine, G., Bourbigot, S., Devaux, E., Campagne, C., Ferreira, M., Solarski, S., Chapter 21-Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites, Polymer Green Flame Retardants. 2014, Elsevier, Amsterdam, 709–773 http://dx.doi.org/10.1016/B978-0-444-53808-6.00021-4.
Mukherjee, T., Kao, N., PLA based biopolymer reinforced with natural fibre: a review. J. Polym. Environ. 19:3 (2011), 714–725, 10.1007/s10924-011-0320-6.
Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S., Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9:5 (2010), 552–571, 10.1111/j.1541-4337.2010.00126.x.
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., Delvaux, B., Halloysite clay minerals - a review. Clay Miner. 40:4 (2005), 383–426, 10.1180/0009855054040180.
Yuan, P., Tan, D., Annabi-Bergaya, F., Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci. 112–113 (2015), 75–93 http://dx.doi.org/10.1016/j.clay.2015.05.001.
Rawtani, D., Agrawal, Y.K., Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci. 30:3 (2012), 282–295.
Liu, M., Jia, Z., Jia, D., Zhou, C., Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39:8 (2014), 1498–1525 http://dx.doi.org/10.1016/j.progpolymsci.2014.04.004.
Du, M., Guo, B., Jia, D., Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 59:5 (2010), 574–582, 10.1002/pi.2754.
Murariu, M., Dechief, A.-L., Paint, Y., Peeterbroeck, S., Bonnaud, L., Dubois, P., Polylactide (PLA)—halloysite nanocomposites: production, morphology and key-properties. J. Polym. Environ. 20:4 (2012), 932–943, 10.1007/s10924-012-0488-4.
Gorrasi, G., Pantani, R., Murariu, M., Dubois, P., PLA/Halloysite nanocomposite films: water vapor barrier properties and specific key characteristics. Macromol. Mater. Eng. 299:1 (2014), 104–115, 10.1002/mame.201200424.
Kim, S.H.K.Y.H., Choi, H.J., Choi, K., Kao, N., Bhattacharya, S.N., Gupta, R.K., Thermal, mechanical, and rheological characterization of polylactic acid/halloysite nanotube nanocomposites. J. Macromol. Sci. Part B 55:7 (2016), 680–692, 10.1080/00222348.2016.1187054.
Liu, M., Zhang, Y., Zhou, C., Nanocomposites of halloysite and polylactide. Appl. Clay Sci. 75–76 (2013), 52–59 http://dx.doi.org/10.1016/j.clay.2013.02.019.
Notta-Cuvier, D., Murariu, M., Odent, J., Delille, R., Bouzouita, A., Raquez, J.-M., Lauro, F., Dubois, P., Tailoring polylactide properties for automotive applications: effects of Co-Addition of halloysite nanotubes and selected plasticizer. Macromol. Mater. Eng. 300:7 (2015), 684–698, 10.1002/mame.201500032.
Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M.F., Krawczak, P., Poly(lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J. Appl. Polym. Sci. 128:3 (2013), 1895–1903, 10.1002/app.38358.
Rashmi, B.J., Prashantha, K., Lacrampe, M.F., Krawczak, P., Toughening of poly(Lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. Express Polym. Lett. 9:8 (2015), 721–735, 10.3144/expresspolymlett.2015.67.
Wu, W., Cao, X., Zhang, Y., He, G., Polylactide/halloysite nanotube nanocomposites: thermal, mechanical properties, and foam processing. J. Appl. Polym. Sci. 130:1 (2013), 443–452, 10.1002/app.39179.
De Silva, R.T., Soheilmoghaddam, M., Goh, K.L., Wahit, M.U., Bee, S.A.H., Chai, S.-P., Pasbakhsh, P., Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym. Compos. 37:3 (2016), 861–869, 10.1002/pc.23244.
Kaynak, C., Kaygusuz, I., Consequences of accelerated weathering in polylactide nanocomposites reinforced with halloysite nanotubes. J. Compos. Mater. 50:3 (2016), 365–375, 10.1177/0021998315575038.
Zhang, Y., Tang, A., Yang, H., Ouyang, J., Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. 119:Part 1 (2016), 8–17 http://dx.doi.org/10.1016/j.clay.2015.06.034.
Murariu, M., Dechief, A.-L., Ramy-Ratiarison, R., Paint, Y., Raquez, J.-M., Dubois, P., Recent advances in production of poly(lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites 1:2 (2015), 71–82, 10.1179/2055033214Y.0000000008.
Guo, J., Qiao, J., Zhang, X., Effect of an alkalized-modified halloysite on PLA crystallization, morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites. n/a-n/a J. Appl. Polym. Sci., 2016, 10.1002/app.44272.
Odelius, K., Höglund, A., Kumar, S., Hakkarainen, M., Ghosh, A.K., Bhatnagar, N., Albertsson, A.-C., Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 12:4 (2011), 1250–1258, 10.1021/bm1015464.
Tsuji, H., Saeki, T., Tsukegi, T., Daimon, H., Fujie, K., Comparative study on hydrolytic degradation and monomer recovery of poly(l-lactic acid) in the solid and in the melt. Polym. Degrad. Stab. 93:10 (2008), 1956–1963 http://dx.doi.org/10.1016/j.polymdegradstab.2008.06.009.
Ikada, E., Photo- and bio-degradable polyesters. Photodegradation behaviors of aliphatic polyesters. J. Photopolym. Sci. Technol. 10:2 (1997), 265–270, 10.2494/photopolymer.10.265.
Tsuji, H., Echizen, Y., Nishimura, Y., Photodegradation of biodegradable polyesters: a comprehensive study on poly(l-lactide) and poly(ɛ-caprolactone). Polym. Degrad. Stab. 91:5 (2006), 1128–1137 http://dx.doi.org/10.1016/j.polymdegradstab.2005.07.007.
Copinet, A., Bertrand, C., Govindin, S., Coma, V., Couturier, Y., Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55:5 (2004), 763–773 http://dx.doi.org/10.1016/j.chemosphere.2003.11.038.
Tsuji, H., Echizen, Y., Nishimura, Y., Enzymatic degradation of poly(l-lactic acid): effects of UV irradiation. J. Polym. Environ. 14:3 (2006), 239–248, 10.1007/s10924-006-0023-6.
Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A., Grohens, Y., Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polym. Degrad. Stab. 95:9 (2010), 1751–1758 http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.014.
Bocchini, S., Fukushima, K., Blasio, A.D., Fina, A., Frache, A., Geobaldo, F., Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11:11 (2010), 2919–2926, 10.1021/bm1006773.
Gardette, M., Thérias, S., Gardette, J.-L., Murariu, M., Dubois, P., Photooxidation of polylactide/calcium sulphate composites. Polym. Degrad. Stab. 96:4 (2011), 616–623 http://dx.doi.org/10.1016/j.polymdegradstab.2010.12.023.
Philippart, J.-L., Sinturel, C., Gardette, J.-L., Influence of light intensity on the photooxidation of polypropylene. Polym. Degrad. Stab. 58:3 (1997), 261–268 http://dx.doi.org/10.1016/S0141-3910(97)00056-6.
Lim, L.T., Auras, R., Rubino, M., Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33:8 (2008), 820–852 http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004.
Speranza, V., De Meo, A., Pantani, R., Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym. Degrad. Stab. 100 (2014), 37–41 https://doi.org/10.1016/j.polymdegradstab.2013.12.031.
Ng, K.-M., Lau, Y.-T.R., Chan, C.-M., Weng, L.-T., Wu, J., Surface studies of halloysite nanotubes by XPS and ToF-SIMS. Surf. Interface Analysis 43:4 (2011), 795–802, 10.1002/sia.3627.
Murariu, M., Paint, Y., Murariu, O., Raquez, J.-M., Bonnaud, L., Dubois, P., Current progress in the production of PLA–ZnO nanocomposites: beneficial effects of chain extender addition on key properties. J. Appl. Polym. Sci., 132(48), 2015, 10.1002/app.42480 n/a-n/a.
Pluta, M., Murariu, M., Alexandre, M., Galeski, A., Dubois, P., Polylactide compositions. The influence of ageing on the structure, thermal and viscoelastic properties of PLA/calcium sulfate composites. Polym. Degrad. Stab. 93:5 (2008), 925–931 http://dx.doi.org/10.1016/j.polymdegradstab.2008.02.001.
De Silva, R.T., Pasbakhsh, P., Goh, K.L., Chai, S.P., Chen, J., Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. J. Compos. Mater. 48:30 (2013), 3705–3717, 10.1177/0021998313513046.
Morlat, S., Mailhot, B., Gonzalez, D., Gardette, J.-L., Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent. Chem. Mater. 16:3 (2004), 377–383, 10.1021/cm031079k.
Bocchini, S., Frache, A., Comparative study of filler influence on polylactide photooxidation. Express Polym. Lett. 7:5 (2013), 431–442, 10.3144/expresspolymlett.2013.40.