[en] Robustness of feature selection techniques is a topic of recent interest, especially in high dimensional domains with small sample sizes, where selected feature subsets are subsequently analysed by domain experts to gain more insight into the problem modelled. In this work, we investigate the robustness of various feature selection techniques, and provide a general scheme to improve robustness using ensemble feature selection. We show that ensemble feature selection techniques show great promise for small sample domains, and provide more robust feature subsets than a single feature selection technique. In addition, we also investigate the effect of ensemble feature selection techniques on classification performance, giving rise to a new model selection strategy.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Drugman, Thomas ; Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Moinet, Alexis ; Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Dutoit, Thierry ; Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Language :
English
Title :
On the Use of Machine Learning in Statistical Parametric Speech Synthesis
F105 - Information, Signal et Intelligence artificielle
Research institute :
R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique R450 - Institut NUMEDIART pour les Technologies des Arts Numériques