Paper published in a journal (Scientific congresses and symposiums)
On the Use of Machine Learning in Statistical Parametric Speech Synthesis
Drugman, Thomas; Moinet, Alexis; Dutoit, Thierry
2008
 

Files


Full Text
benelearn2008_tdamtd.pdf
Author preprint (121.39 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Abstract :
[en] Robustness of feature selection techniques is a topic of recent interest, especially in high dimensional domains with small sample sizes, where selected feature subsets are subsequently analysed by domain experts to gain more insight into the problem modelled. In this work, we investigate the robustness of various feature selection techniques, and provide a general scheme to improve robustness using ensemble feature selection. We show that ensemble feature selection techniques show great promise for small sample domains, and provide more robust feature subsets than a single feature selection technique. In addition, we also investigate the effect of ensemble feature selection techniques on classification performance, giving rise to a new model selection strategy.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Drugman, Thomas ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Moinet, Alexis ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Dutoit, Thierry ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Language :
English
Title :
On the Use of Machine Learning in Statistical Parametric Speech Synthesis
Publication date :
19 May 2008
Event name :
Benelearn 2008 - Annual Machine Learning Conference
Event place :
Spa, Belgium
Event date :
2008
Research unit :
F105 - Information, Signal et Intelligence artificielle
Research institute :
R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
Available on ORBi UMONS :
since 10 December 2010

Statistics


Number of views
11 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Bibliography


Similar publications



Contact ORBi UMONS