Article (Scientific journals)
Stylistic gait synthesis based on hidden Markov models
Tilmanne, Joëlle; Moinet, Alexis; Dutoit, Thierry
2012In EURASIP Journal on Advances in Signal Processing, 2012 (March)
Peer Reviewed verified by ORBi
 

Files


Full Text
eurasip2012_jtamtd.pdf
Publisher postprint (601.9 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
[en] gait; [en] hidden Markov models; [en] style; [en] motion synthesis; [en] motion capture; [en] expressivity
Abstract :
[en] In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators.
Disciplines :
Library & information sciences
Author, co-author :
Tilmanne, Joëlle ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Moinet, Alexis ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Dutoit, Thierry ;  Université de Mons > Faculté Polytechnique > Information, Signal et Intelligence artificielle
Language :
English
Title :
Stylistic gait synthesis based on hidden Markov models
Publication date :
26 March 2012
Journal title :
EURASIP Journal on Advances in Signal Processing
ISSN :
1687-6172
Publisher :
Springer Open, Germany
Volume :
2012
Issue :
March
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F105 - Information, Signal et Intelligence artificielle
Research institute :
R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques
Available on ORBi UMONS :
since 02 October 2012

Statistics


Number of views
19 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
18
Scopus citations®
without self-citations
10

Bibliography


Similar publications



Contact ORBi UMONS