silver nanoparticles; water disinfection; zinc oxide; General Materials Science; General Chemical Engineering
Abstract :
[en] In this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial disinfection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in "Standard Methods for the Examination of Water and Wastewater" were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis, and disinfection efficiency.
Disciplines :
Chemistry
Author, co-author :
Primo, Julia de O; Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil ; Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
Horsth, Dienifer F; Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil ; Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
Correa, Jamille de S; Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85040-080, Brazil
Drinking-Water. Available online: www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 28 March 2022).
Lopes, M.P.; Matos, C.T.; Pereira, V.J.; Benoliel, M.J.; Valério, M.E.; Bucha, L.B.; Rodrigues, A.; Penetra, A.I.; Ferreira, E.; Cardoso, V.V.; et al. Production of Drinking Water Using a Multi-Barrier Approach Integrating Nanofiltration: A Pilot Scale Study. Sep. Purif. Technol. 2013, 119, 112–122. https://doi.org/10.1016/j.seppur.2013.09.002.
Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N.B. Preparation and Antibacterial Activity of Chitosan-Based Nanocomposites Containing Bentonite-Supported Silver and Zinc Oxide Nanoparticles for Water Disinfection. Appl. Clay Sci. 2015, 114, 330–339. https://doi.org/10.1016/j.clay.2015.06.010.
Motshekga, S.C.; Sinha Ray, S.; Maity, A. Synthesis and Characterization of Alginate Beads Encapsulated Zinc Oxide Nanoparticles for Bacteria Disinfection in Water. J. Colloid Interface Sci. 2018, 512, 686–692. https://doi.org/10.1016/j.jcis.2017.10.098.
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591–4602. https://doi.org/10.1016/j.wa-tres.2008.08.015.
Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931– 3946. https://doi.org/10.1016/j.watres.2012.09.058.
Pathak, S.P.; Gopal, K. Evaluation of Bactericidal Efficacy of Silver Ions on Escherichia Coli for Drinking Water Disinfection. Environ. Sci. Pollut. Res. 2012, 19, 2285–2290. https://doi.org/10.1007/s11356-011-0735-6.
Bao, Q.; Zhang, D.; Qi, P. Synthesis and Characterization of Silver Nanoparticle and Graphene Oxide Nanosheet Composites as a Bactericidal Agent for Water Disinfection. J. Colloid Interface Sci. 2011, 360, 463–470. https://doi.org/10.1016/j.jcis.2011.05.009.
Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia Coli O157:H7. J. Appl. Microbiol. 2009, 107, 1193–1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x.
Colon, G.; Ward, B.C.; Webster, T.J. Increased Osteoblast and DecreasedStaphylococcus Epidermidis Functions on Nanophase ZnO and TiO2. J. Biomed. Mater. Res. Part A 2006, 78A, 595–604. https://doi.org/10.1002/jbm.a.30789.
Panchal, P.; Paul, D.R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S.P. Biogenic Mediated Ag/ZnO Nanocomposites for Photocatalytic and Antibacterial Activities towards Disinfection of Water. J. Colloid Interface Sci. 2020, 563, 370–380. https://doi.org/10.1016/j.jcis.2019.12.079.
Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N.; Alanazi, H.S.; Alsyahi, A.A.; Marghany, A.E.; Ahmad, N. Facile One-Pot Green Synthesis of Ag–ZnO Nanocomposites Using Potato Peeland Their Ag Concentration Dependent Photocatalytic Properties. Sci. Rep. 2020, 10, 20229. https://doi.org/10.1038/s41598-020-77426-y.
Seong, S.; Park, I.-S.; Jung, Y.C.; Lee, T.; Kim, S.Y.; Park, J.S.; Ko, J.-H.; Ahn, J. Synthesis of Ag-ZnO Core-Shell Nanoparticles with Enhanced Photocatalytic Activity through Atomic Layer Deposition. Mater. Des. 2019, 177, 107831. https://doi.org/10.1016/j.matdes.2019.107831.
Pokrowiecki, R.; Wojnarowicz, J.; Zareba, T.; Koltsov, I.; Lojkowski, W.; Tyski, S.; Mielczarek, A.; Zawadzki, P. Nanoparticles and Human Saliva: A Step towards Drug Delivery Systems for Dental and Craniofacial Biomaterials. Int. J. Nanomed. 2019, 14, 9235–9257. https://doi.org/10.2147/IJN.S221608.
Zare, M.; Namratha, K.; Alghamdi, S.; Mohammad, Y.H.E.; Hezam, A.; Zare, M.; Drmosh, Q.A.; Byrappa, K.; Chandrashekar, B.N.; Ramakrishna, S.; et al. Novel Green Biomimetic Approach for Synthesis of ZnO-Ag Nanocomposite; Antimicrobial Activity against Food-Borne Pathogen, Biocompatibility and Solar Photocatalysis. Sci. Rep. 2019, 9, 8303. https://doi.org/10.1038/s41598-019-44309-w.
de O. Primo, J.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J.-F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal from Wastewater. Front. Chem. 2020, 8. 1100. https://doi.org/10.3389/fchem.2020.571790.
Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6. https://doi.org/10.1186/2251-7235-6-6.
Das, J.; Pradhan, S.K.; Sahu, D.R.; Mishra, D.K.; Sarangi, S.N.; Nayak, B.B.; Verma, S.; Roul, B.K. Micro-Raman and XPS Studies of Pure ZnO Ceramics. Phys. B Condens. Matter 2010, 405, 2492–2497. https://doi.org/10.1016/j.physb.2010.03.020.
Riesemeier, H.; Ecker, K.; Görner, W.; Müller, B.R.; Radtke, M.; Krumrey, M. Layout and First XRF Applications of the BAM Line at BESSY II. X-Ray Spectrom. 2005, 34, 160–163. https://doi.org/10.1002/xrs.750.
Newville, M.; Ravel, B.; Haskel, D.; Rehr, J.J.; Stern, E.A.; Yacoby, Y. Analysis of Multiple-Scattering XAFS Data Using Theoretical Standards. Phys. B Condens. Matter 1995, 208–209, 154–156. https://doi.org/10.1016/0921-4526(94)00655-F.
Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater Method 2540 D. Total Suspended Solids; 23rd ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF): Washington DC, USA.
Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Enhanced Photocatalytic and Antibacterial Activities of Sol–Gel Synthesized ZnO and Ag-ZnO. Mater. Sci. Semicond. Process. 2011, 14, 133–138. https://doi.org/10.1016/j.mssp.2011.01.017.
Georgekutty, R.; Seery, M.K.; Pillai, S.C. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. https://doi.org/10.1021/jp802729a.
Wei, Y.; Wang, X.; Yi, G.; Zhou, L.; Cao, J.; Sun, G.; Chen, Z.; Bala, H.; Zhang, Z. Hydrothermal Synthesis of Ag Modified ZnO Nanorods and Their Enhanced Ethanol-Sensing Properties. Mater. Sci. Semicond. Process. 2018, 75, 327–333. https://doi.org/10.1016/j.mssp.2017.11.007.
Kokate, M.; Garadkar, K.; Gole, A. Zinc-Oxide-Silica-Silver Nanocomposite: Unique One-Pot Synthesis and Enhanced Catalytic and Anti-Bacterial Performance. J. Colloid Interface Sci. 2016, 483, 249–260. https://doi.org/10.1016/j.jcis.2016.08.039.
Asamoah, R.B.; Annan, E.; Mensah, B.; Nbelayim, P.; Apalangya, V.; Onwona-Agyeman, B.; Yaya, A. A Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites. Adv. Mater. Sci. Eng. 2020, 2020, 1 – 18. https://doi.org/10.1155/2020/7814324.
Srithar, A.; Kannan, J.C.; Senthil, T.S. Kannan Preparation and Characterization of Ag Doped ZnO Nanoparticles and Its Antibacterial Applications. J. Adv. Chem. 2017, 13, 6273–6279.
Hamidian, K.; Sarani, M.; Sheikhi, E.; Khatami, M. Cytotoxicity Evaluation of Green Synthesized ZnO and Ag-Doped ZnO Nanoparticles on Brain Glioblastoma Cells. J. Mol. Struct. 2022, 1251, 131962. https://doi.org/10.1016/j.molstruc.2021.131962.
Gayathri, S.; Ghosh, O.S.N.; Sathishkumar, S.; Sudhakara, P.; Jayaramudu, J.; Ray, S.S.; Viswanath, A.K. Investigation of Physicochemical Properties of Ag Doped ZnOnanoparticles Prepared by Chemical Route. Appl. Sci. Lett. 2015, 1, 8–13.
Zeferino, R.S.; Flores, M.B.; Pal, U. Photoluminescence and Raman Scattering in Ag-Doped ZnO Nanoparticles. J. Appl. Phys. 2011, 109, 014308. https://doi.org/10.1063/1.3530631.
Youn, C.J.; Jeong, T.S.; Han, M.S.; Kim, J.H. Optical Properties of Zn-Terminated ZnO Bulk. J. Cryst. Growth 2004, 261, 526–532. https://doi.org/10.1016/j.jcrysgro.2003.09.044.
Jusserand, B.; Cardona, M. Raman Spectroscopy of Vibrations in Superlattices. In Light Scattering in Solids V; Springer: Berlin/Heidelberg, Germany, 1989; pp. 49–152.
Cheng, Y.; Wang, W.; Yao, L.; Wang, J.; Liang, Y.; Fu, J. Insights into Charge Transfer and Solar Light Photocatalytic Activity Induced by the Synergistic Effect of Defect State and Plasmon in Au Nanoparticle-Decorated Hierarchical 3D Porous ZnO Microspheres. Appl. Surf. Sci. 2019, 494, 959–968. https://doi.org/10.1016/j.apsusc.2019.07.257.
Yıldırım, Ö.A.; Unalan, H.E.; Durucan, C. Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties. J. Am. Ceram. Soc. 2013, 96, 766–773. https://doi.org/10.1111/jace.12218.
Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K.M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic Dye Degradation and Antimicrobial Activities of Pure and Ag-Doped ZnO Using Cannabis Sativa Leaf Extract. Sci. Rep. 2020, 10, 7881. https://doi.org/10.1038/s41598-020-64419-0.
Chen, M.; Wang, X.; Yu, Y.H.; Pei, Z.L.; Bai, X.D.; Sun, C.; Huang, R.F.; Wen, L.S. X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Studies of Al-Doped ZnO Films. Appl. Surf. Sci. 2000, 158, 134–140. https://doi.org/10.1016/S0169- 4332(99)00601-7.
Al-Gaashani, R.; Radiman, S.; Daud, A.R.; Tabet, N.; Al-Douri, Y. XPS and Optical Studies of Different Morphologies of ZnO Nanostructures Prepared by Microwave Methods. Ceram. Int. 2013, 39, 2283–2292. https://doi.org/10.1016/j.cera-mint.2012.08.075.
Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible Light-Assisted Room Temperature Gas Sensing with ZnO- Ag Heterostructure Nanoparticles. Sens. Actuators B Chem. 2018, 259, 269–281. https://doi.org/10.1016/j.snb.2017.12.052.
Koningsberger, D.C.; Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Wiley: New York, 1988.
Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551.
Das, A.; Rajput, P.; Kaur, A.; Balasubramanian, C.; Kanjilal, D.; Jha, S.N. eg - t2g Sub Band Splitting via Crystal Field and Band Anticrossing Interaction in NixCd1-XO Thin Films. Thin Solid Film. 2021, 736, 138908. https://doi.org/10.1016/j.tsf.2021.138908.
Fan, M.; Gong, L.; Huang, Y.; Wang, D.; Gong, Z. Facile Preparation of Silver Nanoparticle Decorated Chitosan Cryogels for Point-of-Use Water Disinfection. Sci. Total Environ. 2018, 613, 1317–1323. https://doi.org/10.1016/j.scitotenv.2017.09.256.
Kayser, G.; Moriarty, P.; Fonseca, C.; Bartram, J. Domestic Water Service Delivery Indicators and Frameworks for Monitoring, Evaluation, Policy and Planning: A Review. Int. J. Environ. Res. Public Health 2013, 10, 4812–4835. https://doi.org/10.3390/ijerph10104812.
Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An Overview of Silver Nano-Particles as Promising Materials for Water Disinfection. Environ. Technol. Innov. 2021, 23, 101721. https://doi.org/10.1016/j.eti.2021.101721.
Gogoi, S.K.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S.S.; Chattopadhyay, A. Green Fluorescent Protein-Expressing Escherichia c Oli as a Model System for Investigating the Antimicrobial Activities of Silver Nanoparticles. Langmuir 2006, 22, 9322– 9328. https://doi.org/10.1021/la060661v.
Mazhar, M.A.; Khan, N.A.; Ahmed, S.; Khan, A.H.; Hussain, A.; Rahisuddin; Changani, F.; Yousefi, M.; Ahmadi, S.; Vambol, V. Chlorination Disinfection By-Products in Municipal Drinking Water-A Review. J. Clean. Prod. 2020, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159.