Michalski, A., Brzezinski, M., Lapienis, G., Biela, T., Star-shaped and branched polylactides: synthesis, characterization, and properties. Prog. Polym. Sci. 89 (2019), 159–212, 10.1016/j.progpolymsci.2018.10.004.
Long, L.-X., Zhao, J., Li, K., He, L.G., Qian, X.M., Liu, C.Y., Wang, L.-M., Yang, X.-Q., Sun, J., Ren, Y., Khang, C.-S., Yan, X.-B., Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs in vivo. Mater. Chem. Phys. 180 (2016), 184–194, 10.1016/j.matchemphys.2016.05.062.
Wong, S.K., Zainol, I., Ng, M.P., Ng, C.H., Ooi, I.Hong, Dendrimer-like AB2-type star polymers as nanocarriers for doxorubicin delivery to breast cancer cells: synthesis, characterization, in-vitro release and cytotoxicity studies. J. Polym. Res., 27, 2020, 190, 10.1007/s10965-020-02089-2.
Wu, T., Cai, Y., Zhao, X., Ngai, C.X., Chu, B., Hsiao, B., Hadjiargyrou, M., Grubbs, R.B., Synthesis and characterization of poly(ethylene oxide)/polylactide/polylysine tri-arm star copolymers for gene delivery. J. Polym. Sci.APolym. Chem. 56 (2018), 635–644, 10.1002/pola.28938.
Tao, W., Zeng, X., Liu, T., Wanga, Z., Xiong, Q., Ouyang, C., Huang, L., Mei, L., Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 9 (2013), 8910–8920, 10.1016/j.actbio.2013.06.034.
Liu, X., Jin, X., Ma, P.X., Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 10 (2011), 398–406, 10.1038/nmat2999.
Xie, M., Wang, L., Ge, J., Guo, B., Ma, P.X., Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl.Mater. Interfaces 7 (2015), 6772–6781, 10.1021/acsami.5b00191.
Hadjichristidis, N., Iatrou, H., Pitsikalis, M., Driva, P., Sakellariou, G., Chatzichristidi, M., Polymers with star-related structures: synthesis, properties, and applications. Matyjaszewski, K., Möller, M., (eds.) Polymer Science: A Comprehensive Reference, Volume 6: Macromolecular Architectures And Soft Nano-objects, 2012, Elsevier, Amsterdam, 29–111.
Biela, T., Duda, A., Pasch, H., Rode, K., Star-shaped poly(L-lactide)s with variable numbers of hydroxyl groups at polyester arms chain-ends and directly attached to the star-shaped core – controlled synthesis and characterization. J. Polym. Sci. A Polym. Chem. 43 (2005), 6116–6133, 10.1002/pola.21035.
Khanna, K., Varshney, S., Kakkar, A., Designing miktoarm polymers using a combination of “Click” reactions in sequence with ring-opening polymerization. Macromolecules 43 (2010), 5688–5698, 10.1021/ma100845a.
Mineo, P.G., Foti, C., Vento, F., Montesi, M., Panseri, S., Piperno, A., Scala, A., Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal. Bioanal. Chem. 412 (2020), 4681–4690, 10.1007/s00216-020-02721-6.
Liénard, R., Montesi, M., Panseri, S., Dozio, S.M., Vento, F., Mineo, P., Piperno, A., De Winter, J., Coulembier, O., Scala, A., Design of naturally inspired jellyfish-shaped cyclo-polylactides to manage osteosarcoma cancer stem cells fate. Mater. Sci. Eng. C, 117, 2020, 111291, 10.1016/j.msec.2020.111291.
Scala, A., Piperno, A., Torcasio, S.M., Nicosia, A., Mineo, P.G., Grassi, G., “Clickable” polylactic acids obtained by solvent free intra-chain amidation. Eur. Polym. J. 109 (2018), 341–346, 10.1016/j.eurpolymj.2018.10.004.
Scala, A., Piperno, A., Micale, N., Mineo, P.G., Abbadessa, A., Risoluti, R., Castelli, G., Bruno, F., Vitale, F., Cascio, A., Grassi, G., “Click” on PLGA-PEG and hyaluronic acid: gaining access to anti-leishmanial pentamidine bioconjugates. J. Biomed. Mater. Res. B Appl. Biomater. 106:8 (2018), 2778–2785, 10.1002/jbm.b.34058.
Battistini, L., Bugatti, K., Sartori, A., Curti, C., Zanardi, F., RGD peptide-drug conjugates as effective dual targeting platforms: recent advances. Eur. J. Org. Chem. 17 (2021), 2506–2528, 10.1002/ejoc.202100240.
Morse, D.L., Gray, H., Payne, C.M., Gillies, R.J., Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol. Cancer Ther. 4 (2005), 1495–1503, 10.1158/1535-7163.MCT-05-0130.
Yewale, C., Baradia, D., Patil, S., Bhatt, P., Amrutiya, J., Gandhi, R., Kore, G., Misra, A., Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. J. Drug Deliv. Sci. Technol. 45 (2018), 334–345, 10.1016/j.jddst.2018.03.027.
Astner, S.T., Pihusch, R., Nieder, C., Rachinger, W., Lohner, H., Tonn, J.C., Molls, M., Grosu, A.-L., Extensive local and systemic therapy in extraneural metastasized glioblastoma multiforme. Anticancer Res. 26 (2006), 4917–4920.
Gallego-Yerga, L., Posadas, I., de la Torre, C., Ruiz-Almansa, J., Sansone, F., Ortiz Mellet, C., Casnati, A., García Fernández, J.M., Ceña, V., Docetaxel-loaded nanoparticles assembled from β-cyclodextrin/calixarene giant surfactants: physicochemical properties and cytotoxic effect in prostate cancer and glioblastoma cells. Front. Pharmacol., 8, 2017, 249, 10.3389/fphar.2017.00249.
Zwain, T., Alder, J.E., Sabagh, B., Shaw, A., Burrow, A.J., Singh, K.K., Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. Mater. Sci. Eng. C, 121, 2021, 111774, 10.1016/j.msec.2020.111774.
Ouyang, L.-Q., Li, L.-J., Zhu, K.-J., Qu, X.-C., Docetaxel inhibits the migration and invasion of breast cancer cells by suppressing filopodia formation. Tumor 33:9 (2013), 776–780, 10.3781/j.issn.1000-7431.2013.09.005.
Wang, Xiuxiu, Cheng, Ru, Zhong, Zhiyuan, Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomater. 125 (2021), 280–289, 10.1016/j.actbio.2021.02.044.
Ghassami, E., Varshosaz, J., Mirian, M., Jahanian-Najafabadi, A., HER-2 aptamer-targeted Ecoflex® nanoparticles loaded with docetaxel promote breast cancer cells apoptosis and anti-metastatic effect. IET Nanobiotechnol. 13:4 (2019), 428–434, 10.1049/iet-nbt.2018.5047.
Varshosaz, J., Davoudi, M.A., Rasoul-Amini, S., Docetaxel loaded nanostructured lipid carriers functionalized with Trastuzumab (Herceptin) for HER2-positive breast cancer cells. J. Liposome Res. 28 (2018), 285–295, 10.1080/08982104.2017.1370471.
Rafiei, P., Haddadi, A., Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int. J. Nanomedicine 12 (2017), 935–947, 10.2147/IJN.S121881.
Xu, Z., Zhang, Y., Hu, Q., Tang, Q., Xu, J., Wu, J., Kirk, T.B., Ma, D., Xue, W., Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 71 (2017), 965–972, 10.1016/j.msec.2016.11.005.
Conte, C., Scala, A., Siracusano, G., Sortino, G., Pennisi, R., Piperno, A., Miro, A., Ungaro, F., Sciortino, M.T., Quaglia, F., Mazzaglia, A., Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: design, physicochemical properties and intracellular effects. Colloids Surf. B 146 (2016), 590–597, 10.1016/j.colsurfb.2016.06.047.
Zhu, D., Tao, W., Zhang, H., Liu, G., Wang, T., Zhang, L., Zeng, X., Mei, L., Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 30 (2016), 144–154, 10.1016/j.actbio.2015.11.031.
Chang, M., Lu, S., Zhang, F., Zuo, T., Guan, Y., Wei, T., Shao, W., Lin, G., RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf. B 129 (2015), 175–182, 10.1016/j.colsurfb.2015.03.046.
Ponce Bobadilla, A.V., Arévalo, J., Sarró, E., Byrne, H.M., Maini, P.K., Carraro, T., Balocco, S., Meseguer, A., Alarcón, T., In vitro cell migration quantification method for scratch assays. J. R. Soc. Interface, 16, 2019, 20180709, 10.1098/rsif.2018.0709.
Garofalo, C., Capuano, G., Sottile, R., Tallerico, R., Adami, R., Reverchon, E., Carbone, E., Izzo, L., Pappalardo, D., Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 15 (2014), 403–415, 10.1021/bm401812r.
Mahou, R., Wandrey, C., Versatile route to synthesize heterobifunctional poly(ethylene glycol) of variable functionality for subsequent Pegylation. Polymers 4 (2012), 561–589, 10.3390/polym4010561.
Boopathi, S.K., Hadjichristidis, N., Gnanou, Y., Feng, X., Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide. Nat. Commun., 10, 2019, 293, 10.1038/s41467-018-08251-1.
Leophairatana, P., De Silva, C.C., Koberstein, J.T., How good is CuAAC “click” chemistry for polymer coupling reactions?. J. Polym. Sci.APolym.Chem. 56 (2018), 75–84, 10.1002/pola.28872.
Leophairatana, P., Samanta, S., De Silva, C.C., Koberstein, J.T., Preventing alkyne-alkyne (i.e., Glaser) coupling associated with the ATRP synthesis of alkyne-functional polymers/macromonomers and for alkynes under click (i.e., CuAAC) reaction conditions. J. Am. Chem. Soc. 139 (2017), 3756–3766, 10.1021/jacs.6b12525.
Li, C., Wanga, W., Xi, Y., Wang, J., Chen, J.-F., Yun, J., Le, Y., Design, preparation and characterization of cyclic RGDfK peptide modified poly(ethylene glycol)-block-poly(lactic acid) micelle for targeted delivery. Mater. Sci. Eng. C 64 (2016), 303–309, 10.1016/j.msec.2016.03.062.
Falvey, P., Lim, C.W., Darcy, R., Revermann, T., Karst, U., Giesbers, M., Marcelis, A.T., Lazar, A., Coleman, A.W., Reinhoudt, D.N., Ravoo, B.J., Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules. Chem. Eur. J. 11 (2005), 1171–1180, 10.1002/chem.200400905.
Kreuzer, H.J., Wang, R.L.C., Grunze, M., Hydroxide ion adsorption on self-assembled monolayers. J. Am. Chem. Soc. 125 (2003), 8384–8389, 10.1021/ja0350839.
Johnsson, M., Wagenaar, A., Engberts, J.B.F.N., Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. J. Am. Chem. Soc. 125 (2003), 757–760, 10.1021/ja028195t.
Rios De La Rosa, J.M., Spadea, A., Donno, R., et al. Microfluidic-assisted preparation of RGD-decorated nanoparticles: exploring integrin-facilitated uptake in cancer cell lines. Sci. Rep., 10, 2020, 14505, 10.1038/s41598-020-71396-x.
Tao, W., Zeng, X., Liu, T., Wang, Z., Xiong, Q., Ouyang, C., Huang, L., Mei, L., Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 9 (2013), 8910–8920, 10.1016/j.actbio.2013.06.034.
Ordanini, S., Cellesi, F., Complex polymeric architectures self-assembling in unimolecular micelles: preparation,characterization and drug nanoencapsulation. Pharmaceutics, 10, 2018, 209, 10.3390/pharmaceutics10040209.
Jin, X., Sun, P., Tong, G., Zhu, X., Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis. Biomaterials 178 (2018), 738–750, 10.1016/j.biomaterials.2018.01.051.
Shibata, M., Matsumoto, M., Hirai, Y., Takenaka, M., Sawamoto, M., Terashima, T., Intramolecular folding or intermolecular self-assembly of amphiphilic random copolymers: on-demand control by pendant design. Macromolecules 51 (2018), 3738–3745, 10.1021/acs.macromol.8b00570.
Bolu, B.S., Golba, B., Boke, N., Sanyal, A., Sanyal, R., Designing dendron-polymer conjugate based targeted drug delivery platforms with a “Mix-and-Match” modularity. Bioconjug. Chem. 28 (2017), 2962–2975, 10.1021/acs.bioconjchem.7b00595.
Martínez-Reyes, I., Chandel, N.S., Cancer metabolism: looking forward. Nat. Rev. Cancer 21 (2021), 669–680, 10.1038/s41568-021-00378-6.
Cheng, K.T., [18F]FB-NH-mini-PEG-E{E[c(RGDyK)]2}2. [Updated 2008 Mar 12] Molecular Imaging And Contrast Agent Database (MICAD), 2008 Feb 20, National Center for Biotechnology Information (US), Bethesda (MD), 2004–2013 [Internet].
Sim, T., Kim, J.E., Hoang, N.H., Kang, J.K., Lim, C., Kim, D.S., Lee, E.S., Youn, Y.S., Choi, H.-G., Han, H.-K., Weon, K.-Y., Oh, K.T., Development of a docetaxel micellar formulation using poly(ethylene glycol)–polylactide–poly(ethylene glycol) (PEG–PLA–PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv. 25 (2018), 1362–1371, 10.1080/10717544.2018.1477865.