Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene.
Materials Chemistry; Inorganic Chemistry; Polymers and Plastics; Organic Chemistry
Abstract :
[en] Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Disciplines :
Chemistry
Author, co-author :
Zaky, Mohamed Samir; Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
Wirotius, Anne-Laure; Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
Coulembier, Olivier ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Guichard, Gilles ; Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
Taton, Daniel ; Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
Language :
English
Title :
Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene.
Minist?re de l'Enseignement sup?rieur, de la Recherche et de l'Innovation Agence Nationale de la Recherche Centre National de la Recherche Scientifique
Worch, J. C.; Prydderch, H.; Jimaja, S.; Bexis, P.; Becker, M. L.; Dove, A. P. Stereochemical Enhancement of Polymer Properties. Nat. Rev. Chem. 2019, 3, 514-535, 10.1038/s41570-019-0117-z
Tutoni, G.; Becker, M. L. Underexplored Stereocomplex Polymeric Scaffolds with Improved Thermal and Mechanical Properties. Macromolecules 2020, 53, 10303-10314, 10.1021/acs.macromol.0c01468
Pino, P.; Galimberti, M.; Prada, P.; Consiglio, G. Enantioselective Hydro-Oligomerization (Protio-or Deuterio-) of α-Olefins. Die Makromol. Chemie 1990, 191, 1677-1688, 10.1002/macp.1990.021910720
Coates, G. W.; Waymouth, R. M. Enantioselective Cyclopolymerization: Optically Active Poly(Methylene-l,3-Cyclopentane). J. Am. Chem. Soc. 1991, 113, 6270-6271, 10.1021/ja00016a053
Coates, G. W.; Waymouth, R. M. Chiral Polymers via Cyclopolymerization. J. Mol. Catal. 1992, 76, 189-194, 10.1016/0304-5102(92)80157-C
Coates, G. W.; Waymouth, R. M. Enantioselective Cyclopolymerization of 1,5-Hexadiene Catalyzed by Chiral Zirconocenes: A Novel Strategy for the Synthesis of Optically Active Polymers with Chirality in the Main Chain. J. Am. Chem. Soc. 1993, 115, 91-98, 10.1021/ja00054a014
Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143-1170, 10.1002/anie.199511431
Tschan, M. J.-L. J. L.; Gauvin, R. M.; Thomas, C. M. Controlling Polymer Stereochemistry in Ring-Opening Polymerization: A Decade of Advances Shaping the Future of Biodegradable Polyesters. Chem. Soc. Rev. 2021, 50, 13587-13608, 10.1039/D1CS00356A
Shakaroun, R. M.; Jéhan, P.; Alaaeddine, A.; Carpentier, J. F.; Guillaume, S. M. Organocatalyzed Ring-Opening Polymerization (ROP) of Functional β-Lactones: New Insights into the ROP Mechanism and Poly(Hydroxyalkanoate)s (PHAs) Macromolecular Structure. Polym. Chem. 2020, 11, 2640-2652, 10.1039/D0PY00125B
Li, H.; Ollivier, J.; Guillaume, S. M.; Carpentier, J.-F. Tacticity Control of Cyclic Poly(3-Thiobutyrate) Prepared by Ring-Opening Polymerization of Racemic β-Thiobutyrolactone. Angew. Chem., Int. Ed. 2022, 61, e202202386, 10.1002/anie.202202386
Jérôme, C.; Lecomte, P. Recent Advances in the Synthesis of Aliphatic Polyesters by Ring-Opening Polymerization. Adv. Drug Delivery Rev. 2008, 60, 1056-1076, 10.1016/j.addr.2008.02.008
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J. A.; Qiu, W.; Duan, W.; O'Brien-Simpson, N. M.; Qiao, G. G. Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49, 4737-4834, 10.1039/C9CS00738E
Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016, 116, 2170-2243, 10.1021/acs.chemrev.5b00441
Mezzasalma, L.; Dove, A. P.; Coulembier, O. Organocatalytic Ring-Opening Polymerization of l-Lactide in Bulk: A Long Standing Challenge. Eur. Polym. J. 2017, 95, 628-634, 10.1016/j.eurpolymj.2017.05.013
Walsh, D. J.; Hyatt, M. G.; Miller, S. A.; Guironnet, D. Recent Trends in Catalytic Polymerizations. ACS Catal. 2019, 9, 11153-11188, 10.1021/acscatal.9b03226
Williams, C. K. Synthesis of Functionalized Biodegradable Polyesters. Chem. Soc. Rev. 2007, 36, 1573-1580, 10.1039/b614342n
Clayman, N. E.; Morris, L. S.; Lapointe, A. M.; Keresztes, I.; Waymouth, R. M.; Coates, G. W. Dual Catalysis for the Copolymerisation of Epoxides and Lactones. Chem. Commun. 2019, 55, 6914-6917, 10.1039/C9CC00493A
Beament, J.; Mahon, M. F.; Buchard, A.; Jones, M. D. Aluminum Complexes of Monopyrrolidine Ligands for the Controlled Ring-Opening Polymerization of Lactide. Organometallics 2018, 37, 1719-1724, 10.1021/acs.organomet.8b00161
Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A. Highly Stereoelective Polymerization of rac-(D,L)-Lactide with a Chiral Schiff's Base/Aluminium Alkoxide Initiator. Macromol. Chem. Phys. 1996, 197, 2627-2637, 10.1002/macp.1996.021970902
Stanford, M. J.; Dove, A. P. Stereocontrolled Ring-Opening Polymerisation of Lactide. Chem. Soc. Rev. 2010, 39, 486-494, 10.1039/B815104K
Ovitt, T. M.; Coates, G. W. Stereochemistry of Lactide Polymerization with Chiral Catalysts: New Opportunities for Stereocontrol Using Polymer Exchange Mechanisms. J. Am. Chem. Soc. 2002, 124, 1316-1326, 10.1021/ja012052+
Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A. Le. Highly Stereoelective Polymerization of rac-(D,L)-Lactide with a Chiral Schiff's Base/Aluminium Alkoxide Initiator. Macromol. Chem. Phys. 1996, 197, 2627-2637, 10.1002/macp.1996.021970902
Pilone, A.; Press, K.; Goldberg, I.; Kol, M.; Mazzeo, M.; Lamberti, M. Gradient Isotactic Multiblock Polylactides from Aluminum Complexes of Chiral Salalen Ligands. J. Am. Chem. 2014, 136, 2940-2943, 10.1021/ja412798x
Hador, R.; Botta, A.; Venditto, V.; Lipstman, S.; Goldberg, I.; Kol, M. The Dual-Stereocontrol Mechanism: Heteroselective Polymerization of Rac-Lactide and Syndioselective Polymerization of Meso-Lactide by Chiral Aluminum Salan Catalysts. Angew. Chemie-Int. Ed. 2019, 58, 14679-14685, 10.1002/anie.201906848
Lim, L. T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820-852, 10.1016/j.progpolymsci.2008.05.004
Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(Lactic Acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657-1677, 10.1016/j.progpolymsci.2012.07.005
Qi, X.; Ren, Y.; Wang, X. New Advances in the Biodegradation of Poly(Lactic) Acid. Int. Biodeterior. Biodegradation 2017, 117, 215-223, 10.1016/j.ibiod.2017.01.010
Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresour. Technol. 2010, 101, 8493-8501, 10.1016/j.biortech.2010.05.092
Belletti, G.; Buoso, S.; Ricci, L.; Guillem-Ortiz, A.; Aragón-Gutiérrez, A.; Bortolini, O.; Bertoldo, M. Preparations of Poly(Lactic Acid) Dispersions in Water for Coating Applications. Polymers 2021, 13, 2767, 10.3390/polym13162767
Im, S. H.; Im, D. H.; Park, S. J.; Chung, J. J.; Jung, Y.; Kim, S. H. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Mol. 2021, 26, 2846, 10.3390/molecules26102846
Kadina, Y. A.; Razuvaeva, E. V.; Streltsov, D. R.; Sedush, N. G.; Shtykova, E. V.; Kulebyakina, A. I.; Puchkov, A. A.; Volkov, D. S.; Nazarov, A. A.; Chvalun, S. N. Poly(Ethylene Glycol)-b-Poly(D,L-Lactide) Nanoparticles as Potential Carriers for Anticancer Drug Oxaliplatin. Mol. 2021, 26, 602, 10.3390/molecules26030602
Wulf, K.; Goblet, M.; Raggl, S.; Teske, M.; Eickner, T.; Lenarz, T.; Grabow, N.; Paasche, G. PLLA Coating of Active Implants for Dual Drug Release. Mol. 2022, 27, 1417, 10.3390/molecules27041417
Masutani, K.; Kimura, Y. PLA Synthesis and Polymerization. Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications; RSC, 2014, Chapter 1. 10.1039/9781782624806-FP011
Tsuji, H. Poly(Lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569-597, 10.1002/mabi.200500062
Tsuji, H.; Iguchi, K.; Arakawa, Y. Stereocomplex-and Homo-Crystallization Behavior, Structure, Morphology, and Thermal Properties of Crystalline and Amorphous Stereo Diblock Copolymers, Enantiomeric Poly(L-Lactide)-b-Poly(DL-Lactide) and Poly(D-Lactide)-b-Poly(DL-Lactide). Polymer 2021, 213, 123226, 10.1016/j.polymer.2020.123226
Bian, S.; Abbina, S.; Lu, Z.; Kolodka, E.; Du, G. Ring-Opening Polymerization of Rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes. Organometallics 2014, 33, 2489-2495, 10.1021/om401226j
Marin, P.; Tschan, M. J. L.; Isnard, F.; Robert, C.; Haquette, P.; Trivelli, X.; Chamoreau, L. M.; Guérineau, V.; del Rosal, I.; Maron, L.; Venditto, V.; Thomas, C. M. Polymerization of Rac-Lactide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angew. Chemie-Int. Ed. 2019, 58, 12585-12589, 10.1002/anie.201903224
Yuntawattana, N.; McGuire, T. M.; Durr, C. B.; Buchard, A.; Williams, C. K. Indium Phosphasalen Catalysts Showing High Isoselectivity and Activity in Racemic Lactide and Lactone Ring Opening Polymerizations. Catal. Sci. Technol. 2020, 10, 7226-7239, 10.1039/D0CY01484B
Qu, Z.; Duan, R.; Pang, X.; Gao, B.; Li, X.; Tang, Z.; Wang, X.; Chen, X. Living and Stereoselective Polymerization of Rac-Lactide by Bimetallic Aluminum Schiff-Base Complexes. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1344-1352, 10.1002/pola.27123
Sun, Z.; Duan, R.; Zhang, H.; Pang, X.; Wang, X.; Chen, X. Highly Stereoselective Polymerization of Racemic Lactide by Bimetallic Schiff Base Complexes. J. Renew. Mater. 2015, 3, 82-90, 10.7569/JRM.2014.634133
Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and Challenges in Organo-Mediated Polymerization Reactions. Prog. Polym. Sci. 2016, 56, 64-115, 10.1016/j.progpolymsci.2015.12.001
Khalil, A.; Saba, S.; Ribault, C.; Vlach, M.; Loyer, P.; Coulembier, O.; Cammas-marion, S. Synthesis of Poly(Dimethylmalic Acid) Homo-and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers 2020, 12, 1705, 10.3390/polym12081705
Xia, Y.; Shen, J.; Alamri, H.; Hadjichristidis, N.; Zhao, J.; Wang, Y.; Zhang, G. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(Ethylene Oxide). Biomacromolecules 2017, 18, 3233-3237, 10.1021/acs.biomac.7b00891
MacMillan, D. W. C. The Advent and Development of Organocatalysis. Nature 2008, 455, 304-308, 10.1038/nature07367
Press release: The Nobel Prize in Chemistry 2021, https://www.nobelprize.org/prizes/chemistry/2021/press-release/ (accessed Apr 10, 2022).
Lim, J. Y. C.; Yuntawattana, N.; Beer, P. D.; Williams, C. K. Isoselective Lactide Ring Opening Polymerisation Using [2]Rotaxane Catalysts. Angew. Chemie Int. Ed. 2019, 58, 6007-6011, 10.1002/anie.201901592
Jiang, X.; Zhao, N.; Li, Z. Stereoselective Ring-Opening Polymerization of Rac-Lactide Catalyzed by Squaramide Derived Organocatalysts at Room Temperature. Chin. J. Chem. 2021, 39, 2403-2409, 10.1002/cjoc.202100230
Liu, S.; Li, H.; Zhao, N.; Li, Z. Stereoselective Ring-Opening Polymerization of Rac-Lactide Using Organocatalytic Cyclic Trimeric Phosphazene Base. ACS Macro Lett. 2018, 7, 624-628, 10.1021/acsmacrolett.8b00353
Miyake, G. M.; Chen, E. Y. X. Cinchona Alkaloids as Stereoselective Organocatalysts for the Partial Kinetic Resolution Polymerization of Rac-Lactide. Macromolecules 2011, 44, 4116-4124, 10.1021/ma2007199
Sanchez-Sanchez, A.; Rivilla, I.; Agirre, M.; Basterretxea, A.; Etxeberria, A.; Veloso, A.; Sardon, H.; Mecerreyes, D.; Cossío, F. P. Enantioselective Ring-Opening Polymerization of Rac-Lactide Dictated by Densely Substituted Amino Acids. J. Am. Chem. Soc. 2017, 139, 4805-4814, 10.1021/jacs.6b13080
Moins, S.; Hoyas, S.; Lemaur, V.; Orhan, B.; Chiaie, K. D.; Lazzaroni, R.; Taton, D.; Dove, A. P.; Coulembier, O. Stereoselective Rop of Rac-and Meso-Lactides Using Achiral Tbd as Catalyst. Catalysts 2020, 10, 620, 10.3390/catal10060620
Lin, B.; Waymouth, R. M. Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations. J. Am. Chem. Soc. 2017, 139, 1645-1652, 10.1021/jacs.6b11864
Lin, B.; Waymouth, R. M. Organic Ring-Opening Polymerization Catalysts: Reactivity Control by Balancing Acidity. Macromolecules 2018, 51, 2932-2938, 10.1021/acs.macromol.8b00540
Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and Selective Ring-Opening Polymerizations by Alkoxides and Thioureas. Nat. Chem. 2016, 8, 1047-1053, 10.1038/nchem.2574
Zhou, L.; Xu, G.; Mahmood, Q.; Lv, C.; Wang, X.; Sun, X.; Guo, K.; Wang, Q. N-Heterocyclic Olefins and Thioureas as an Efficient Cooperative Catalyst System for Ring-Opening Polymerization of δ-Valerolactone. Polym. Chem. 2019, 10, 1832-1838, 10.1039/C9PY00018F
Coderre, D. N.; Fastnacht, K. V.; Wright, T. J.; Dharmaratne, N. U.; Kiesewetter, M. K. H-Bonding Organocatalysts for Ring-Opening Polymerization at Elevated Temperatures. Macromolecules 2018, 51, 10121-10126, 10.1021/acs.macromol.8b02219
Jiang, Z.-L.; Zhao, J.-P.; Zhang, G.-Z. Readily Prepared and Tunable Ionic Organocatalysts for Ring-Opening Polymerization of Lactones. Chin. J. Polym. Sci. 2019, 37, 1205-1214, 10.1007/s10118-019-2285-1
Jiang, Z.; Zhao, J.; Zhang, G. Ionic Organocatalyst with a Urea Anion and Tetra-n-Butyl Ammonium Cation for Rapid, Selective, and Versatile Ring-Opening Polymerization of Lactide. ACS Macro Lett. 2019, 8, 759-765, 10.1021/acsmacrolett.9b00418
Xia, Y.; Chen, Y.; Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Base-to-Base Organocatalytic Approach for One-Pot Construction of Poly(Ethylene Oxide)-Based Macromolecular Structures. Macromolecules 2016, 49, 6817-6825, 10.1021/acs.macromol.6b01542
Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. A Facile Method to Prepare High Molecular Weight Bio-Renewable Poly(γ-Butyrolactone) Using a Strong Base/Urea Binary Synergistic Catalytic System. Polym. Chem. 2019, 10, 1231-1237, 10.1039/C8PY01812J
Zhang, C. J.; Hu, L. F.; Wu, H. L.; Cao, X. H.; Zhang, X. H. Dual Organocatalysts for Highly Active and Selective Synthesis of Linear Poly(γ-Butyrolactone)s with High Molecular Weights. Macromolecules 2018, 51, 8705-8711, 10.1021/acs.macromol.8b01757
Kan, Z.; Luo, W.; Shi, T.; Wei, C.; Han, B.; Zheng, D.; Liu, S. Facile Preparation of Stereoblock PLA from Ring-Opening Polymerization of rac-Lactide by a Synergetic Binary Catalytic System Containing Ureas and Alkoxides. Front. Chem. 2018, 6, 1-9, 10.3389/fchem.2018.00547
Zaky, M. S.; Wirotius, A.-L.; Coulembier, O.; Guichard, G.; Taton, D. A Chiral Thiourea and a Phosphazene for Fast and Stereoselective Organocatalytic Ring-Opening-Polymerization of Racemic Lactide. Chem. Commun. 2021, 57, 3777-3780, 10.1039/D0CC08022E
Kamber, N. E.; Jeong, W.; Gonzalez, S.; Hedrick, J. L.; Waymouth, R. M. N-Heterocyclic Carbenes for the Organocatalytic Ring-Opening Polymerization of ϵ-Caprolactone. Macromolecules 2009, 42, 1634-1639, 10.1021/ma802618h
Naumann, S.; Dove, A. P. N-Heterocyclic Carbenes as Organocatalysts for Polymerizations: Trends and Frontiers. Polym. Chem. 2015, 6, 3185-3200, 10.1039/C5PY00145E
Marion, N.; Díez-González, S.; Nolan, S. P. N-Heterocyclic Carbenes as Organocatalysts. Angew. Chemie Int. Ed. 2007, 46, 2988-3000, 10.1002/anie.200603380
Magill, A. M.; Cavell, K. J.; Yates, B. F. Basicity of Nucleophilic Carbenes in Aqueous and Nonaqueous Solvents-Theoretical Predictions. J. Am. Chem. Soc. 2004, 126, 8717-8724, 10.1021/ja038973x
Higgins, E. M.; Sherwood, J. A.; Lindsay, A. G.; Armstrong, J.; Massey, R. S.; Alder, R. W.; O'Donoghue, A. C. PK as of the Conjugate Acids of N-Heterocyclic Carbenes in Water. Chem. Commun. 2011, 47, 1559-1561, 10.1039/C0CC03367G
Orhan, B.; Tschan, M. J.-L.; Wirotius, A.-L.; Dove, A. P.; Coulembier, O.; Taton, D. Isoselective Ring-Opening Polymerization of Rac-Lactide from Chiral Takemoto's Organocatalysts: Elucidation of Stereocontrol. ACS Macro Lett. 2018, 7, 1413-1419, 10.1021/acsmacrolett.8b00852
Rossini, E.; Bochevarov, A. D.; Knapp, E. W. Empirical Conversion of PKa Values between Different Solvents and Interpretation of the Parameters: Application to Water, Acetonitrile, Dimethyl Sulfoxide, and Methanol. ACS Omega 2018, 3, 1653-1662, 10.1021/acsomega.7b01895
Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. (Thio)Urea Organocatalyst Equilibrium Acidities in DMSO. Org. Lett. 2012, 14, 1724-1727, 10.1021/ol300307c
Kowalski, A.; Duda, A.; Penczek, S. Polymerization of l,l-Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer. Macromolecules 1998, 31, 2114-2122, 10.1021/ma971737k
Gómez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Urea vs. Thiourea in Anion Recognition. Org. Biomol. Chem. 2005, 3, 1495-1500, 10.1039/B500123D
Takemoto, Y. Recognition and Activation by Ureas and Thioureas »: Stereoselective Reactions Using Ureas and Thioureas as Hydrogen-Bonding Donors. Org. Biomol. Chem. 2005, 3, 4299-4306, 10.1039/b511216h
Zhang, Z.; Schreiner, P. R. (Thio)Urea Organocatalysis─What Can Be Learnt from Anion Recognition?. Chem. Soc. Rev. 2009, 38, 1187-1198, 10.1039/b801793j
Liu, S.; Li, H.; Zhao, N.; Li, Z. Stereoselective Ring-Opening Polymerization of Rac-Lactide Using Organocatalytic Cyclic Trimeric Phosphazene Base. ACS Macro Lett. 2018, 7, 624-628, 10.1021/acsmacrolett.8b00353
Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. Organocatalytic Stereoselective Ring-Opening Polymerization of Lactide with Dimeric Phosphazene Bases. J. Am. Chem. Soc. 2007, 129, 12610-12611, 10.1021/ja074131c
Li, H.; Ai, B. R.; Hong, M. Stereoselective Ring-Opening Polymerization of Rac-Lactide by Bulky Chiral and Achiral N-Heterocyclic Carbenes. Chin. J. Polym. Sci. (English Ed. 2018, 36, 231-236, 10.1007/s10118-018-2071-5