[en] Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Research center :
CMMI - Centre de Recherche en Microscopie et Imagerie Médicale
Disciplines :
Chemistry
Author, co-author :
Varzandeh, Mohammad; Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran. Electronic address: m.varzande@ma.iut.ac.ir
Labbaf, Sheyda ; Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran. Electronic address: s.labbaf@iut.ac.ir
Varshosaz, Jaleh; Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address: varshosaz@pharm.mui.ac.ir
Laurent, Sophie ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Chimie générale, organique et biomédicale
Language :
English
Title :
An overview of the intracellular localization of high-Z nanoradiosensitizers.
Abbas, Z., Rehman, S., An overview of cancer treatment modalities. Neoplasma (Bratisl.) 1 (2018), 139–157.
Aderem, A., Underhill, D.M., Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17 (1999), 593–623.
Ahmad, R., Schettino, G., Royle, G., Barry, M., Pankhurst, Q.A., Tillement, O., Russell, B., Ricketts, K., Radiobiological implications of nanoparticles following radiation treatment. Part. Part. Syst. Char., 37, 2020, 1900411.
Alhussan, A., Bozdoğan, E.P.D., Chithrani, D.B., Combining gold nanoparticles with other radiosensitizing agents for unlocking the full potential of cancer radiotherapy. Pharmaceutics, 13, 2021, 442.
Alizadeh, M.J., Kariminezhad, H., Monfared, A.S., Mostafazadeh, A., Amani, H., Niksirat, F., Pourbagher, R., An experimental study about the application of Gadolinium oxide nanoparticles in magnetic theranostics. Mater. Res. Express, 6, 2019, 065025.
Allolio, C., Magarkar, A., Jurkiewicz, P., Baxová, K., Javanainen, M., Mason, P.E., Šachl, R., Cebecauer, M., Hof, M., Horinek, D., Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. USA 115 (2018), 11923–11928.
Anselmo, A.C., Mitragotri, S., Nanoparticles in the clinic. Bioeng. Transl. Med. 1 (2016), 10–29.
Bae, G.D., Park, E.-Y., Kim, K., Jang, S.-E., Jun, H.-S., Oh, Y.S., Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci. Rep. 9 (2019), 1–10.
Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M.A., Alkawareek, M.Y., Dreaden, E.C., Brown, D., Alkilany, A.M., Farokhzad, O.C., Mahmoudi, M., Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46 (2017), 4218–4244.
Benej, M., Hong, X., Vibhute, S., Scott, S., Wu, J., Graves, E., Le, Q.-T., Koong, A.C., Giaccia, A.J., Yu, B., Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 115 (2018), 10756–10761.
Berry, C., Intracellular Delivery of Nanoparticles via the HIV-1 Tat Peptide. 2008.
Bonvalot, S., Rutkowski, P.L., Thariat, J., Carrère, S., Ducassou, A., Sunyach, M.-P., Agoston, P., Hong, A., Mervoyer, A., Rastrelli, M., NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 20 (2019), 1148–1159.
Bouallegui, Y., Ben Younes, R., Turki, F., Mezni, A., Oueslati, R., Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles. Drug Chem. Toxicol. 41 (2018), 169–174.
Bridot, J.-L., Faure, A.-C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.-L., Vander Elst, L., Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 129 (2007), 5076–5084.
Bromma, K., Rieck, K., Kulkarni, J., O'Sullivan, C., Sung, W., Cullis, P., Schuemann, J., Chithrani, D.B., Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnol., 10, 2019, 1.
Brun, E., Sanche, L., Sicard-Roselli, C., Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf., B: Biointerfaces 72 (2009), 128–134.
Butterworth, K., Coulter, J., Jain, S., Forker, J., McMahon, S., Schettino, G., Prise, K., Currell, F., Hirst, D., Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology, 21, 2010, 295101.
Cahlon, O., Zelefsky, M.J., Shippy, A., Chan, H., Fuks, Z., Yamada, Y., Hunt, M., Greenstein, S., Amols, H., Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int. J. Radiat. Oncol. Biol. Phys. 71 (2008), 330–337.
Cai, Z., Pignol, J.P., Chattopadhyay, N., Kwon, Y.L., Lechtman, E., Reilly, R.M., Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation. Med. Phys., 40, 2013, 114101.
Cao, Y., Long, J., Liu, L., He, T., Jiang, L., Zhao, C., Li, Z., A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure,. Life Sci. 186 (2017), 33–42.
Chen, F., Zhang, X.H., Hu, X.D., Liu, P.D., Zhang, H.Q., The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artific. Cell. Nanomed. Biotechnol. 46 (2018), 937–948.
Chithrani, B.D., Chan, W.C., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7 (2007), 1542–1550.
Chithrani, B.D., Ghazani, A.A., Chan, W.C., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6 (2006), 662–668.
Chithrani, D.B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R.G., Hill, R.P., Jaffray, D.A., Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 173 (2010), 719–728.
Choi, J.W., Moon, W.-J., Gadolinium deposition in the brain: current updates. Korean J. Radiol. 20 (2019), 134–147.
Choo, P., Liu, T., Odom, T.W., Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes. J. Am. Chem. Soc. 143:12 (2021), 4550–4555.
Cluntun, A.A., Lukey, M.J., Cerione, R.A., Locasale, J.W., Glutamine metabolism in cancer: understanding the heterogeneity. Trends in cancer 3 (2017), 169–180.
Cong, V.T., Wang, W., Tilley, R.D., Sharbeen, G., Phillips, P.A., Gaus, K., Gooding, J.J., Can the shape of nanoparticles enable the targeting to cancer cells over healthy cells?. Adv. Funct. Mater., 2021, 2007880.
Contini, C., Schneemilch, M., Gaisford, S., Quirke, N., Nanoparticle–membrane interactions. J. Exp. Nanosci. 13 (2018), 62–81.
Cubillos-Ruiz, J.R., Bettigole, S.E., Glimcher, L.H., Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168 (2017), 692–706.
Cui, L., Tse, K., Zahedi, P., Harding, S.M., Zafarana, G., Jaffray, D.A., Bristow, R.G., Allen, C., Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat. Res. 182 (2014), 475–488.
Cui, Y., Pan, M., Ma, J., Song, X., Cao, W., Zhang, P., Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol. Cell. Biochem., 2020, 1–14.
Dadey, D.Y., Kapoor, V., Hoye, K., Khudanyan, A., Collins, A., Thotala, D., Hallahan, D.E., Antibody targeting GRP78 enhances the efficacy of radiation therapy in human glioblastoma and non–small cell lung cancer cell lines and tumor models. Clin. Cancer Res. 23 (2017), 2556–2564.
Dadey, D.Y., Kapoor, V., Khudanyan, A., Thotala, D., Hallahan, D.E., PERK regulates glioblastoma sensitivity to ER stress although promoting radiation resistance. Mol. Cancer Res. 16 (2018), 1447–1453.
Damm, E.-M., Pelkmans, L., Kartenbeck, J.r., Mezzacasa, A., Kurzchalia, T., Helenius, A., Clathrin-and caveolin-1–independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168 (2005), 477–488.
Delorme, R., Taupin, F., Flaender, M., Ravanat, J.L., Champion, C., Agelou, M., Elleaume, H., Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med. Phys. 44 (2017), 5949–5960.
Derossi, D., Chassaing, G., Prochiantz, A., Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8 (1998), 84–87.
Detappe, A., Kunjachan, S., Rottmann, J., Robar, J., Tsiamas, P., Korideck, H., Tillement, O., Berbeco, R., AGuIX nanoparticles as a promising platform for image-guided radiation therapy. Cancer Nanotechnol. 6 (2015), 1–9.
Detappe, A., Kunjachan, S., Sancey, L., Motto-Ros, V., Biancur, D., Drane, P., Guieze, R., Makrigiorgos, G.M., Tillement, O., Langer, R., Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Contr. Release 238 (2016), 103–113.
Detappe, A., Thomas, E., Tibbitt, M.W., Kunjachan, S., Zavidij, O., Parnandi, N., Reznichenko, E., Lux, F., Tillement, O., Berbeco, R., Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance–computed tomography image guided radiation therapy. Nano Lett. 17 (2017), 1733–1740.
Dini, L., Panzarini, E., Serra, A., Buccolieri, A., Manno, D., Synthesis and in vitro cytotoxicity of glycans-capped silver nanoparticles. Nanomater. Nanotechnol., 1, 2011, 10.
Donahue, N.D., Acar, H., Wilhelm, S., Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143 (2019), 68–96.
Dudás, J., Ladányi, A., Ingruber, J., Steinbichler, T.B., Riechelmann, H., Epithelial to mesenchymal transition: a mechanism that fuels cancer radio/chemoresistance,. Cells, 9, 2020, 428.
Dufort, S., Bianchi, A., Henry, M., Lux, F., Le Duc, G., Josserand, V., Louis, C., Perriat, P., Crémillieux, Y., Tillement, O., Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 11 (2015), 215–221.
Dufort, S., Le Duc, G., Salomé, M., Bentivegna, V., Sancey, L., Bräuer-Krisch, E., Requardt, H., Lux, F., Coll, J.-L., Perriat, P., The high radiosensitizing efficiency of a trace of gadolinium-based nanoparticles in tumors,. Sci. Rep. 6 (2016), 1–8.
Ehrlich, M., Boll, W., Van Oijen, A., Hariharan, R., Chandran, K., Nibert, M.L., Kirchhausen, T., Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118 (2004), 591–605.
Eiríksdóttir, E., Konate, K., Langel, Ü., Divita, G., Deshayes, S., Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim. Biophys. Acta Biomembr. 1798 (2010), 1119–1128.
Fan, W., Shen, B., Bu, W., Zheng, X., He, Q., Cui, Z., Ni, D., Zhao, K., Zhang, S., Shi, J., Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials 69 (2015), 89–98.
Fan, W., Shen, B., Bu, W., Zheng, X., He, Q., Cui, Z., Zhao, K., Zhang, S., Shi, J., Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chem. Sci. 6 (2015), 1747–1753.
Fang, X., Wang, Y., Ma, X., Li, Y., Zhang, Z., Xiao, Z., Liu, L., Gao, X., Liu, J., Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. J. Mater. Chem. B 5 (2017), 4190–4197.
Faustino, R., Nelson, T., Terzic, A., Perez-Terzic, C., Nuclear transport: target for therapy. Clin. Pharmacol. Therapeut. 81 (2007), 880–886.
Feldherr, C.M., Akin, D., The permeability of the nuclear envelope in dividing and nondividing cell cultures,. J. Cell Biol. 111 (1990), 1–8.
Gao, S., Zhang, W., Wang, R., Hopkins, S.P., Spagnoli, J.C., Racin, M., Bai, L., Li, L., Jiang, W., Yang, X., Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. ACS Nano, 2020.
Geng, F., Xing, J.Z., Chen, J., Yang, R., Hao, Y., Song, K., Kong, B., Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer. J. Biomed. Nanotechnol. 10 (2014), 1205–1216.
Gheran, C.V., Voicu, S.N., Rigaux, G., Callewaert, M., Chuburu, F., Dinischiotu, A., Biological effects induced by Gadolinium nanoparticles on Lymphocyte A20 cell line. EuroBiotech. J. 1 (2017), 57–64.
Ghita, M., McMahon, S.J., Taggart, L.E., Butterworth, K.T., Schettino, G., Prise, K.M., A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation,. Sci. Rep. 7 (2017), 1–12.
Giocanti, N., Hennequin, C., Balosso, J., Mahler, M., Favaudon, V., DNA repair and cell cycle interactions in radiation sensitization by the topoisomerase II poison etoposide. Cancer Res. 53 (1993), 2105–2111.
Goetz, J.G., Lajoie, P., Wiseman, S.M., Nabi, I.R., Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 27 (2008), 715–735.
Guidelli, E.J., Baffa, O., Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: an experimental approach. Med. Phys., 41, 2014, 032101.
Guo, X.-x., Guo, Z.-h., Wu, M., Lu, J.-s., Xie, W.-s., Zhong, Q.-z., Chi, Y.-j., Sun, X.-d., Wang, X.-m., Wang, J.-y., All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest. DNA Damage and ROS Production as Prostate Cancer Radiosensitizer for Potential Clinical Translation, 2021.
Guo, Z., Zhu, S., Yong, Y., Zhang, X., Dong, X., Du, J., Xie, J., Wang, Q., Gu, Z., Zhao, Y., Synthesis of BSA-coated BiOI@ Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater., 29, 2017, 1704136.
Gustafson, H.H., Holt-Casper, D., Grainger, D.W., Ghandehari, H., Nanoparticle uptake: the phagocyte problem. Nano Today 10 (2015), 487–510.
Guterstam, P., Madani, F., Hirose, H., Takeuchi, T., Futaki, S., Andaloussi, S.E., Gräslund, A., Langel, Ü., Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim. Biophys. Acta Biomembr. 1788 (2009), 2509–2517.
Hanahan, D., Weinberg, R.A., The hallmarks of cancer. Cell 100 (2000), 57–70.
Hao, X., Wu, J., Shan, Y., Cai, M., Shang, X., Jiang, J., Wang, H., Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J. Phys.: Condensed Matter, 24, 2012, 164207.
Hauser, A.K., Mitov, M.I., Daley, E.F., McGarry, R.C., Anderson, K.W., Hilt, J.Z., Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105 (2016), 127–135.
He, L., Lai, H., Chen, T., Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials 51 (2015), 30–42.
Hemmer, E., Yamano, T., Kishimoto, H., Venkatachalam, N., Hyodo, H., Soga, K., Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater. 9 (2013), 4734–4743.
Ho, W., Gao, M., Li, F., Li, Z., Zhang, X.Q., Xu, X., Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv. Healthc. Mater., 10, 2021, 2001812.
Hoffmann, C., Calugaru, V., Borcoman, E., Moreno, V., Calvo, E., Liem, X., Salas, S., Doger, B., Jouffroy, T., Mirabel, X., Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur. J. Cancer 146 (2021), 135–144.
Hoshyar, N., Gray, S., Han, H., Bao, G., The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction,. Nanomedicine 11 (2016), 673–692.
Hossain, M., Su, M., Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J. Phys. Chem. C 116 (2012), 23047–23052.
Howard, D., Sebastian, S., Le, Q.V.-C., Thierry, B., Kempson, I., Chemical mechanisms of nanoparticle radiosensitization and radioprotection: a review of structure-function relationships influencing reactive oxygen species,. Int. J. Mol. Sci., 21, 2020, 579.
Hu, G., Cun, X., Ruan, S., Shi, K., Wang, Y., Kuang, Q., Hu, C., Xiao, W., He, Q., Gao, H., Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci. Rep. 6 (2016), 1–10.
Hu, P., Zhang, X., Li, Y., Pichan, C., Chen, Z., Molecular interactions between silver nanoparticles and model cell membranes. Top. Catal. 61 (2018), 1148–1162.
Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S., Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6 (2011), 715–728.
Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., Newham, P., Lindsay, M.A., Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol., 145, 2005, 1093.
Kalderon, D., Richardson, W.D., Markham, A.F., Smith, A.E., Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311 (1984), 33–38.
Kamińska, I., Fronc, K., Sikora, B., Mouawad, M., Siemiarczuk, A., Szewczyk, M., Sobczak, K., Wojciechowski, T., Zaleszczyk, W., Minikayev, R., Upconverting/magnetic: Gd 2 O 3:(Er 3+, Yb 3+, Zn 2+) nanoparticles for biological applications: effect of Zn 2+ doping. RSC Adv. 5 (2015), 78361–78373.
Kardani, K., Milani, A., Shabani, H., S, Bolhassani, A., Cell penetrating peptides: the potent multi-cargo intracellular carriers,. Expet Opin. Drug Deliv. 16 (2019), 1227–1258.
Karimi, M., Ghasemi, A., Zangabad, P.S., Rahighi, R., Basri, S.M.M., Mirshekari, H., Amiri, M., Pishabad, Z.S., Aslani, A., Bozorgomid, M., Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45 (2016), 1457–1501.
Karimi, S., Moshaii, A., Abbasian, S., Nikkhah, M., Surface plasmon resonance in small gold nanoparticles: introducing a size-dependent plasma frequency for nanoparticles in quantum regime. Plasmonics 14 (2019), 851–860.
Kaur, H., Pujari, G., Semwal, M.K., Sarma, A., Avasthi, D.K., In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 301 (2013), 7–11.
Kefayat, A., Ghahremani, F., Motaghi, H., Mehrgardi, M.A., Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur. J. Pharmaceut. Sci. 130 (2019), 225–233.
Kempson, I., Mechanisms of nanoparticle radiosensitization. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 13, 2021, e1656.
Khalil, I.A., Kogure, K., Futaki, S., Harashima, H., High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 281 (2006), 3544–3551.
Khoshgard, K., Hashemi, B., Arbabi, A., Rasaee, M.J., Soleimani, M., Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys. Med. Biol., 59, 2014, 2249.
Kim, G.C., Cheon, D.H., Lee, Y., Challenge to overcome current limitations of cell-penetrating peptides. Biochim. Biophys. Acta, Proteins Proteomics, 2021, 140604.
Kim, J.A., Åberg, C., Salvati, A., Dawson, K.A., Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol., 7, 2012, 62.
Kim, K.W., Moretti, L., Mitchell, L.R., Jung, D.K., Lu, B., Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2α in caspase-3/7-deficient cells. Oncogene 29 (2010), 3241–3251.
Kong, T., Zeng, J., Wang, X., Yang, X., Yang, J., McQuarrie, S., McEwan, A., Roa, W., Chen, J., Xing, J.Z., Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4 (2008), 1537–1543.
Korman, D., Ostrovskaya, L., Kuz'min, V., Induction of oxidative stress in tumor cells: a new strategy for drug therapy of malignant tumors,. Biophysics 64 (2019), 431–439.
Kryza, D., Taleb, J., Janier, M., Marmuse, L., Miladi, I., Bonazza, P., Louis, C., Perriat, P., Roux, S., Tillement, O., Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjugate Chem. 22 (2011), 1145–1152.
Kuczler, M.D., Olseen, A.M., Pienta, K.J., Amend, S.R., ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol., 2021.
Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., Rothen-Rutishauser, B., Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5 (2014), 1625–1636.
Kulkarni, S.A., Feng, S.-S., Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceut. Res. 30 (2013), 2512–2522.
Labbaf, S., Tsigkou, O., Müller, K.H., Stevens, M.M., Porter, A.E., Jones, J.R., Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32 (2011), 1010–1018.
Le Lay, S., Kurzchalia, T.V., Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim. Biophys. Acta Mol. Cell Res. 1746 (2005), 322–333.
LeDoux, S.P., Driggers, W.J., Hollensworth, B.S., Wilson, G.L., Repair of alkylation and oxidative damage in mitochondrial DNA, Mutation research. DNA Repair 434 (1999), 149–159.
Lee, C.-L., Blum, J.M., Kirsch, D.G., Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl. Cancer Res., 2, 2013, 412.
Lee, E., Knecht, D.A., Visualization of actin dynamics during macropinocytosis and exocytosis. Traffic 3 (2002), 186–192.
Li, F., Li, Z., Jin, X., Liu, Y., Zhang, P., Li, P., Shen, Z., Wu, A., Chen, W., Li, Q., Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. Int. J. Nanomed., 14, 2019, 2415.
Li, J., Lyv, Z., Li, Y., Liu, H., Wang, J., Zhan, W., Chen, H., Chen, H., Li, X., A theranostic prodrug delivery system based on Pt (IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug,. Biomaterials 51 (2015), 12–21.
Li, N., Yu, L., Wang, J., Gao, X., Chen, Y., Pan, W., Tang, B., A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy,. Chem. Sci. 9 (2018), 3159–3164.
Li, P., Shi, Y.-w., Li, B.-x., Xu, W.-c., Shi, Z.-l., Zhou, C., Fu, S., Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target αvβ3 in melanoma cancer cells. J. Nanobiotechnol. 13 (2015), 1–8.
Li, T., Cao, Y., Li, B., Dai, R., The biological effects of radiation-induced liver damage and its natural protective medicine,. Prog. Biophys. Mol. Biol. 167 (2021), 87–95.
Li, Y., Monteiro-Riviere, N.A., Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11 (2016), 3185–3203.
Li, Y., Qi, Y., Zhang, H., Xia, Z., Xie, T., Li, W., Zhong, D., Zhu, H., Zhou, M., Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials, 226, 2020, 119538.
Liu, F., Lou, J., Hristov, D., X-Ray responsive nanoparticles with triggered release of nitrite, a precursor of reactive nitrogen species, for enhanced cancer radiosensitization. Nanoscale 9 (2017), 14627–14634.
Liu, J., Liang, Y., Liu, T., Li, D., Yang, X., Anti-EGFR-conjugated hollow gold nanospheres enhance radiocytotoxic targeting of cervical cancer at megavoltage radiation energies. Nanoscale Res. Lett. 10 (2015), 1–12.
Liu, Y., Ji, W., Shergalis, A., Xu, J., Delaney, A.M., Calcaterra, A., Pal, A., Ljungman, M., Neamati, N., Rehemtulla, A., Activation of the unfolded protein response via inhibition of protein disulfide isomerase decreases the capacity for DNA repair to sensitize glioblastoma to radiotherapy. Cancer Res. 79 (2019), 2923–2932.
Liu, Y., Liu, X., Jin, X., He, P., Zheng, X., Dai, Z., Ye, F., Zhao, T., Chen, W., Li, Q., The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low-and high-LET radiations,. Phys. Med. 31 (2015), 210–218.
Lovrić, J., Bazzi, H.S., Cuie, Y., Fortin, G.R., Winnik, F.M., Maysinger, D., Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83 (2005), 377–385.
Luo, M., Xu, L., Xia, J., Zhao, H., Du, Y., Lei, B., Synthesis of porous gadolinium oxide nanosheets for cancer therapy and magnetic resonance imaging. Mater. Lett., 265, 2020, 127375.
Lux, F., Mignot, A., Mowat, P., Louis, C., Dufort, S., Bernhard, C., Denat, F., Boschetti, F., Brunet, C., Antoine, R., Ultrasmall rigid particles as multimodal probes for medical applications. Angew. Chem. Int. Ed. 50 (2011), 12299–12303.
Lux, F., Tran, V.L., Thomas, E., Dufort, S., Rossetti, F., Martini, M., Truillet, C., Doussineau, T., Bort, G., Denat, F., AGuIX® from bench to bedside—transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol., 92, 2019, 20180365.
Ma, Y.-C., Tang, X.-F., Xu, Y.-C., Jiang, W., Xin, Y.-J., Zhao, W., He, X., Lu, L.-G., Zhan, M.-X., Nano-enabled coordination platform of bismuth nitrate and cisplatin prodrug potentiates cancer chemoradiotherapy via DNA damage enhancement. Biomater. Sci. 9 (2021), 3401–3409.
Macara, I.G., Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65 (2001), 570–594.
Madani, F., Lindberg, S., Langel, Ü., Futaki, S., Gräslund, A., Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys., 2011, 2011.
Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., Levy, L., Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8 (2012), 1167–1181.
Mahmoudi, M., Azadmanesh, K., Shokrgozar, M.A., Journeay, W.S., Laurent, S., Effect of nanoparticles on the cell life cycle. Chem. Rev. 111 (2011), 3407–3432.
Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., Laurent, S., Protein− nanoparticle interactions: opportunities and challenges. Chem. Rev. 111 (2011), 5610–5637.
Mahmoudi, M., Saeedi-Eslami, S.N., Shokrgozar, M.A., Azadmanesh, K., Hassanlou, M., Kalhor, H.R., Burtea, C., Rothen-Rutishauser, B., Laurent, S., Sheibani, S., Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4 (2012), 5461–5468.
Mao, B.-H., Chen, Z.-Y., Wang, Y.-J., Yan, S.-J., Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 8 (2018), 1–16.
Maravilla, K.R., San-Juan, D., Kim, S.J., Elizondo-Riojas, G., Fink, J.R., Escobar, W., Bag, A., Roberts, D.R., Hao, J., Pitrou, C., Tsiouris, A.J., Herskovits, E., Fiebach, J.B., Comparison of gadoterate meglumine and gadobutrol in the MRI diagnosis of primary brain tumors: a double-blind randomized controlled intraindividual crossover study (the REMIND study),. Am. J. Neuroradiol. 38 (2017), 1681–1688.
Marill, J., Anesary, N.M., Paris, S., DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human colorectal cancer cells. Radiother. Oncol. 141 (2019), 262–266.
Marill, J., Anesary, N.M., Zhang, P., Vivet, S., Borghi, E., Levy, L., Pottier, A., Hafnium oxide nanoparticles: toward an in vitropredictive biological effect?. Radiat. Oncol. 9 (2014), 1–11.
Marrache, S., Dhar, S., Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 109 (2012), 16288–16293.
McCann, E., O'Sullivan, J., Marcone, S., Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl. Oncol., 14, 2021, 100905.
McDonald, L., Liu, B., Taraboletti, A., Whiddon, K., Shriver, L.P., Konopka, M., Liu, Q., Pang, Y., Fluorescent flavonoids for endoplasmic reticulum cell imaging. J. Mater. Chem. B 4 (2016), 7902–7908.
McNamara, A., Kam, W., Scales, N., McMahon, S., Bennett, J., Byrne, H., Schuemann, J., Paganetti, H., Banati, R., Kuncic, Z., Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys. Med. Biol., 61, 2016, 5993.
Miladi, I., Aloy, M.-T., Armandy, E., Mowat, P., Kryza, D., Magné, N., Tillement, O., Lux, F., Billotey, C., Janier, M., Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomedicine: Nanotechnology. Biol. Med. 11 (2015), 247–257.
Miladi, I., Duc, G.L., Kryza, D., Berniard, A., Mowat, P., Roux, S., Taleb, J., Bonazza, P., Perriat, P., Lux, F., Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. J. Biomater. Appl. 28 (2013), 385–394.
Milletti, F., Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17 (2012), 850–860.
Mowat, P., Mignot, A., Rima, W., Lux, F., Tillement, O., Roulin, C., Dutreix, M., Bechet, D., Huger, S., Humbert, L., In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J. Nanosci. Nanotechnol. 11 (2011), 7833–7839.
Ni, K., Lan, G., Chan, C., Quigley, B., Lu, K., Aung, T., Guo, N., La Riviere, P., Weichselbaum, R.R., Lin, W., Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 9 (2018), 1–12.
Ni, K., Lan, G., Veroneau, S.S., Duan, X., Song, Y., Lin, W., Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun. 9 (2018), 1–13.
Ninagawa, S., George, G., Mori, K., Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim. Biophys. Acta Gen. Subj., 2020, 129812.
Ohgita, T., Takechi-Haraya, Y., Okada, K., Matsui, S., Takeuchi, M., Saito, C., Nishitsuji, K., Uchimura, K., Kawano, R., Hasegawa, K., Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochim. Biophys. Acta Biomembr., 1862, 2020, 183403.
Ojea-Jiménez, I., García-Fernández, L., Lorenzo, J., Puntes, V.F., Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 6 (2012), 7692–7702.
Panzarini, E., Mariano, S., Dini, L., Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells. Book Glycans Coated Silver Nanoparticles Induces Autophagy and Necrosis in HeLa Cells, 2015, AIP Publishing LLC, City, 020017.
Panzarini, E., Mariano, S., Vergallo, C., Carata, E., Fimia, G.M., Mura, F., Rossi, M., Vergaro, V., Ciccarella, G., Corazzari, M., Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells, Toxicology. In Vitro 41 (2017), 64–74.
Pawlik, T.M., Keyomarsi, K., Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59 (2004), 928–942.
Pelkmans, L., Zerial, M., Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436 (2005), 128–133.
Perera, R.M., Zoncu, R., The lysosome as a regulatory hub,. Annu. Rev. Cell Dev. Biol. 32 (2016), 223–253.
Popken, P., Ghavami, A., Onck, P.R., Poolman, B., Veenhoff, L.M., Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol. Biol. Cell 26 (2015), 1386–1394.
Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., Wu, X., Zhao, Y., Li, Y., Chen, C., Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31 (2010), 7606–7619.
Qu, Y., Lu, K., Zheng, Y., Huang, C., Wang, G., Zhang, Y., Yu, Q., Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact. Mater., 2021.
Ramalho, J., Semelka, R., Ramalho, M., Nunes, R., AlObaidy, M., Castillo, M., Gadolinium-based contrast agent accumulation and toxicity: an update. Am. J. Neuroradiol. 37 (2016), 1192–1198.
Rancoule, C., Magné, N., Vallard, A., Guy, J.-B., Rodriguez-Lafrasse, C., Deutsch, E., Chargari, C., Nanoparticles in radiation oncology: from bench-side to bedside. Cancer Lett. 375 (2016), 256–262.
Reda, M., Ngamcherdtrakul, W., Gu, S., Bejan, D.S., Siriwon, N., Gray, J.W., Yantasee, W., PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 467 (2019), 9–18.
Reed, J., Jurgensmeier, J., Matsuyama, S., Bcl-2 family proteins and mitochondria. Biochim. Biophys. Acta Bioenerg. 1366 (1998), 127–137.
Rejman, J., Bragonzi, A., Conese, M., Role of clathrin-and caveolae-mediated endocytosis in gene transfer mediated by lipo-and polyplexes. Mol. Ther. 12 (2005), 468–474.
Rejman, J., Conese, M., Hoekstra, D., Gene transfer by means of lipo-and polyplexes: role of clathrin and caveolae-mediated endocytosis. J. Liposome Res. 16 (2006), 237–247.
Rieck, K., Bromma, K., Sung, W., Bannister, A., Schuemann, J., Chithrani, D.B., Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. Br. J. Radiol., 92, 2019, 20190283.
Rima, W., Sancey, L., Aloy, M.-T., Armandy, E., Alcantara, G.B., Epicier, T., Malchere, A., Joly-Pottuz, L., Mowat, P., Lux, F., Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 34 (2013), 181–195.
Roa, W., Zhang, X., Guo, L., Shaw, A., Hu, X., Xiong, Y., Gulavita, S., Patel, S., Sun, X., Chen, J., Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20, 2009, 375101.
Robbins, J., Dilwortht, S.M., Laskey, R.A., Dingwall, C., Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64 (1991), 615–623.
Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 (2007), 519–529.
Rothbard, J.B., Jessop, T.C., Lewis, R.S., Murray, B.A., Wender, P.A., Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126 (2004), 9506–9507.
Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., Chait, B.T., The yeast nuclear pore complexcomposition, architecture, and transport mechanism,. JCB (J. Cell Biol.) 148 (2000), 635–652.
Safari, A., Sarikhani, A., Shahbazi-Gahrouei, D., Alamzadeh, Z., Beik, J., Dezfuli, A.S., Mahabadi, V.P., Tohfeh, M., Shakeri-Zadeh, A., Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis Photodyn. Ther., 32, 2020, 102061.
Sancey, L., Kotb, S., Truillet, C., Appaix, F., Marais, A., Thomas, E., van der Sanden, B., Klein, J.-P., Laurent, B., Cottier, M., Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9 (2015), 2477–2488.
Savage, K., Lambros, M.B., Robertson, D., Jones, R.L., Jones, C., Mackay, A., James, M., Hornick, J.L., Pereira, E.M., Milanezi, F., Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin. Cancer Res. 13 (2007), 90–101.
Schmid, E.M., Ford, M.G., Burtey, A., Praefcke, G.J., Peak-Chew, S.-Y., Mills, I.G., Benmerah, A., McMahon, H.T., Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol., 4, 2006, e262.
Schuemann, J., Bagley, A.F., Berbeco, R., Bromma, K., Butterworth, K.T., Byrne, H.L., Chithrani, B.D., Cho, S.H., Cook, J.R., Favaudon, V., Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys. Med. Biol., 65, 2020, 21RM02.
Setua, S., Ouberai, M., Piccirillo, S.G., Watts, C., Welland, M., Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale 6 (2014), 10865–10873.
Shao, D., Lu, M.-m., Zhao, Y.-w., Zhang, F., Tan, Y.-f., Zheng, X., Pan, Y., Xiao, X.-a., Wang, Z., Dong, W.-f, The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater. 49 (2017), 531–540.
Shen, Z., Liu, T., Yang, Z., Zhou, Z., Tang, W., Fan, W., Liu, Y., Mu, J., Li, L., Bregadze, V.I., Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 119783.
Shikata, F., Tokumitsu, H., Ichikawa, H., Fukumori, Y., In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur. J. Pharm. Biopharm. 53 (2002), 57–63.
Silva, S., Almeida, A.J., Vale, N., Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review,. Biomolecules, 9, 2019, 22.
Smith, S.A., Selby, L.I., Johnston, A.P., Such, G.K., The endosomal escape of nanoparticles: toward more efficient cellular delivery,. Bioconjugate Chem. 30 (2018), 263–272.
Spyratou, E., Makropoulou, M., Mourelatou, E., Demetzos, C., Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy. Cancer Lett. 327 (2012), 111–122.
Štefančíková, L., Lacombe, S., Salado, D., Porcel, E., Pagáčová, E., Tillement, O., Lux, F., Depeš, D., Kozubek, S., Falk, M., Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J. Nanobiotechnol., 14, 2016, 63.
Štefančíková, L., Porcel, E., Eustache, P., Li, S., Salado, D., Marco, S., Guerquin-Kern, J.-L., Réfrégiers, M., Tillement, O., Lux, F., Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol., 5, 2014, 6.
Suk, J.S., Xu, Q., Kim, N., Hanes, J., Ensign, L.M., PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99 (2016), 28–51.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca - Cancer J. Clin., 2021.
Tang, L., Wei, F., Wu, Y., He, Y., Shi, L., Xiong, F., Gong, Z., Guo, C., Li, X., Deng, H., Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res., 37, 2018, 87.
Tang, P.S., Sathiamoorthy, S., Lustig, L.C., Ponzielli, R., Inamoto, I., Penn, L.Z., Shin, J.A., Chan, W.C., The role of ligand density and size in mediating quantum dot nuclear transport. Small 10 (2014), 4182–4192.
Taupin, F., Flaender, M., Delorme, R., Brochard, T., Mayol, J.-F., Arnaud, J., Perriat, P., Sancey, L., Lux, F., Barth, R.F., Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys. Med. Biol., 60, 2015, 4449.
Taylor, M.J., Perrais, D., Merrifield, C.J., A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis,. PLoS Biol., 9, 2011, e1000604.
Tkachenko, A.G., Xie, H., Coleman, D., Glomm, W., Ryan, J., Anderson, M.F., Franzen, S., Feldheim, D.L., Multifunctional gold nanoparticle− peptide complexes for nuclear targeting. J. Am. Chem. Soc. 125 (2003), 4700–4701.
Tseng, C.-L., Shih, I.-L., Stobinski, L., Lin, F.-H., Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31 (2010), 5427–5435.
Tsigkou, O., Labbaf, S., Stevens, M.M., Porter, A.E., Jones, J.R., Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Advanced healthcare materials 3 (2014), 115–125.
Tünnemann, G., Ter-Avetisyan, G., Martin, R.M., Stöckl, M., Herrmann, A., Cardoso, M.C., Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J. Peptide Sci.: an official publication of the European Peptide Society 14 (2008), 469–476.
Turnbull, T., Douglass, M., Williamson, N.H., Howard, D., Bhardwaj, R., Lawrence, M., Paterson, D.J., Bezak, E., Thierry, B., Kempson, I.M., Cross-correlative single-cell analysis reveals biological mechanisms of nanoparticle radiosensitization. ACS Nano 13 (2019), 5077–5090.
Urra, H., Dufey, E., Avril, T., Chevet, E., Hetz, C., Endoplasmic reticulum stress and the hallmarks of cancer. Trends in cancer 2 (2016), 252–262.
Vakifahmetoglu-Norberg, H., Ouchida, A.T., Norberg, E., The role of mitochondria in metabolism and cell death,. Biochem. Biophys. Res. Commun. 482 (2017), 426–431.
Vergallo, C., Panzarini, E., Carata, E., Ahmadi, M., Mariano, S., Tenuzzo, B.A., Dini, L., Cytotoxicity of β-D-glucose/sucrose-coated silver nanoparticles depends on cell type, nanoparticles concentration and time of incubation. Book Cytotoxicity of β-D-glucose/sucrose-coated Silver Nanoparticles Depends on Cell Type, Nanoparticles Concentration and Time of Incubation, 2016, AIP Publishing LLC, City, 020012.
Verry, C., Dufort, S., Barbier, E.L., Montigon, O., Peoc'h, M., Chartier, P., Lux, F., Balosso, J., Tillement, O., Sancey, L., MRI-guided clinical 6-MV radiosensitization of glioma using a unique gadolinium-based nanoparticles injection. Nanomedicine 11 (2016), 2405–2417.
Verry, C., Sancey, L., Dufort, S., Le Duc, G., Mendoza, C., Lux, F., Grand, S., Arnaud, J., Quesada, J.L., Villa, J., Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open, 9, 2019.
Walczak, A., Gradzik, K., Kabzinski, J., Przybylowska-Sygut, K., Majsterek, I., The role of the ER-induced UPR pathway and the efficacy of its inhibitors and inducers in the inhibition of tumor progression. Oxid. Med. Cell. Longev., 2019, 2019.
Walrant, A., Vogel, A., Correia, I., Lequin, O., Olausson, B.E., Desbat, B., Sagan, S., Alves, I.D., Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochim. Biophys. Acta Biomembr. 1818 (2012), 1755–1763.
Wang, C., Li, X., Wang, Y., Liu, Z., Fu, L., Hu, L., Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. J. Nanoparticle Res., 15, 2013, 1642.
Wang, F., Yu, L., Monopoli, M.P., Sandin, P., Mahon, E., Salvati, A., Dawson, K.A., The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes, Nanomedicine: nanotechnology,. Biol. Med. 9 (2013), 1159–1168.
Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell Res. 18 (2008), 290–301.
Wang, L., Zhang, T., Huo, M., Guo, J., Chen, Y., Xu, H., Construction of nucleus-targeting iridium nanocrystals for photonic hyperthermia-synergized cancer radiotherapy. Small, 15, 2019, 1903254.
Wang, Z., Chang, Z.-m., Shao, D., Zhang, F., Chen, F., Li, L., Ge, M.-f., Hu, R., Zheng, X., Wang, Y., Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer. ACS Appl. Mater. Interfaces 11 (2019), 34755–34765.
White, B.E., White, M.K., Nima Alsudani, Z.A., Watanabe, F., Biris, A.S., Ali, N., Cellular uptake of gold nanorods in breast cancer cell lines. Nanomaterials, 12, 2022, 937.
Williams, R.M., Zhang, X., Roles of ATM and ATR in DNA double strand breaks and replication stress. Prog. Biophys. Mol. Biol. 161 (2021), 27–38.
Wilson, D.M. III, Deacon, A.M., Duncton, M.A., Pellicena, P., Georgiadis, M.M., Yeh, A.P., Arvai, A.S., Moiani, D., Tainer, J.A., Das, D., Fragment-and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. Prog. Biophys. Mol. Biol. 163 (2021), 130–142.
Wu, M., Xue, Y., Li, N., Zhao, H., Lei, B., Wang, M., Wang, J., Luo, M., Zhang, C., Du, Y., Tumor-microenvironment-induced degradation of ultrathin gadolinium oxide nanoscrolls for magnetic-resonance-imaging-monitored, activatable cancer chemotherapy. Angew. Chem. 131 (2019), 6954–6959.
Wu, P.-h., Onodera, Y., Ichikawa, Y., Rankin, E.B., Giaccia, A.J., Watanabe, Y., Qian, W., Hashimoto, T., Shirato, H., Nam, J.-M., Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int. J. Nanomed., 12, 2017, 5069.
Xie, A., Li, H., Hao, Y., Zhang, Y., Tuning the toxicity of reactive oxygen species into advanced tumor therapy. Nanoscale Res. Lett. 16 (2021), 1–10.
Xie, X., Liao, J., Shao, X., Li, Q., Lin, Y., The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles,. Sci. Rep. 7 (2017), 1–9.
Xiong, J., Han, S., Ding, S., He, J., Zhang, H., Antibody-nanoparticle conjugate constructed with trastuzumab and nanoparticle albumin-bound paclitaxel for targeted therapy of human epidermal growth factor receptor 2-positive gastric cancer. Oncol. Rep. 39 (2018), 1396–1404.
Xu, M., Yang, G., Bi, H., Xu, J., Dong, S., Jia, T., Wang, Z., Zhao, R., Sun, Q., Gai, S., An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chem. Eng. J., 382, 2020, 122822.
Xu, W., Luo, T., Li, P., Zhou, C., Cui, D., Pang, B., Ren, Q., Fu, S., RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression. Int. J. Nanomed., 7, 2012, 915.
Yamazaki, T., Kirchmair, A., Sato, A., Buqué, A., Rybstein, M., Petroni, G., Bloy, N., Finotello, F., Stafford, L., Manzano, E.N., Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 21 (2020), 1160–1171.
Yang, C., Uertz, J., Yohan, D., Chithrani, B., Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 6 (2014), 12026–12033.
Yates, L.A., Regulation of DNA break repair by RNA. Prog. Biophys. Mol. Biol. 163 (2021), 23–33.
Yoo, J., Park, C., Yi, G., Lee, D., Koo, H., Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 11, 2019, 640.
Zhang, L., Su, H., Wang, H., Li, Q., Li, X., Zhou, C., Xu, J., Chai, Y., Liang, X., Xiong, L., Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: shape and active targeting both matter. Theranostics, 9, 2019, 1893.
Zhang, X.-D., Wu, D., Shen, X., Chen, J., Sun, Y.-M., Liu, P.-X., Liang, X.-J., Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33 (2012), 6408–6419.
Zhang, X., Wang, H., Coulter, J.A., Yang, R., Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation. Int. J. Nanomed., 13, 2018, 3541.
Zhang, X., Wang, J., Li, X., Wang, D., Lysosomes contribute to radioresistance in cancer. Cancer Lett. 439 (2018), 39–46.
Zhang, Y., Huang, F., Ren, C., Liu, J., Yang, L., Chen, S., Chang, J., Yang, C., Wang, W., Zhang, C., Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv. Sci., 6, 2019, 1801806.
Zhang, Y., Xu, D., Li, W., Yu, J., Chen, Y., Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J. Nanomater., 2012, 2012.
Zhao, Z., Xu, K., Fu, C., Liu, H., Lei, M., Bao, J., Fu, A., Yu, Y., Zhang, W., Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials, 219, 2019, 119379.
Zhou, S., Zhou, C., Wang, W., Yang, H., Ye, W., The role of epithelial-mesenchymal transition in regulating radioresistance. Crit. Rev. Oncol.-Hematol., 2020, 102961.
Zhu, C.-d., Zheng, Q., Wang, L.-x., Xu, H.-F., Tong, J.-l., Zhang, Q.-a., Wan, Y., Wu, J.-q., Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism. J. Nanobiotechnol., 13, 2015, 67.