Nadisic, Nicolas ; Université de Mons - UMONS > Recherche > Service ERC Unit - Matrix Theory and Optimization
Cohen, Jeremy E.; CNRS - Centre National de la Recherche Scientifique [FR] > CREATIS lab
Vandaele, Arnaud ; Université de Mons - UMONS > Faculté Polytechnique > Service de Mathématique et Recherche opérationnelle
Gillis, Nicolas ; Université de Mons - UMONS > Faculté Polytechnique > Service de Mathématique et Recherche opérationnelle
Language :
English
Title :
Matrix-wise ℓ0-constrained Sparse Nonnegative Least Squares
Publication date :
10 October 2022
Journal title :
Machine Learning
ISSN :
0885-6125
eISSN :
1573-0565
Publisher :
Kluwer Academic Publishers, Netherlands
Volume :
111
Pages :
4453-4495
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F151 - Mathématique et Recherche opérationnelle
Research institute :
R450 - Institut NUMEDIART pour les Technologies des Arts Numériques R300 - Institut de Recherche en Technologies de l'Information et Sciences de l'Informatique
Aharon, M., Elad, M., & Bruckstein, A. M. (2005). K-SVD and its non-negative variant for dictionary design. In Wavelets XI, Int. Soc. for Optics and Photonics.
Ben Mhenni, R., Bourguignon, S., & Ninin, J. (2021). Global optimization for sparse solution of least squares problems. Optimization Methods and Software, 1–30.
Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., & Chanussot, J. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354–379. DOI: 10.1109/JSTARS.2012.2194696
Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed sensing. Applied and computational harmonic analysis, 27(3), 265–274. DOI: 10.1016/j.acha.2009.04.002
Bruckstein, A. M., Elad, M., & Zibulevsky, M. (2008). On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Transactions on Information Theory, 54(11), 4813–4820. DOI: 10.1109/TIT.2008.929920
Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification. International Journal of control, 50(5), 1873–1896. DOI: 10.1080/00207178908953472
Cichocki, A., Phan, A.H., & Caiafa, C. (2008). Flexible HALS algorithms for sparse non-negative matrix/tensor factorization. In IEEE workshop on machine learning for signal processing, (pp. 73–78).
Cohen, J.E., & Gillis, N. (2019). Nonnegative low-rank sparse component analysis. In 2019 IEEE international conference on acoustics, speech and signal processing, (pp. 8226–8230).
Donoho, D. L., & Tsaig, Y. (2008). Fast solution of ℓ1 -norm minimization problems when the solution may be sparse. IEEE Transactions on Information theory, 54(11), 4789–4812. DOI: 10.1109/TIT.2008.929958
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of statistics, 32(2), 407–499. DOI: 10.1214/009053604000000067
Eggert, J., & Korner, E. (2004). Sparse coding and NMF. IEEE International Joint Conference on Neural Networks, 4, 2529–2533.
Foucart, S., & Koslicki, D. (2014). Sparse recovery by means of nonnegative least squares. IEEE Signal Processing Letters, 21(4), 498–502. DOI: 10.1109/LSP.2014.2307064
Gillis, N. (2012). Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13, 3349–3386.
Gillis, N. (2014). Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM Journal on Imaging Sciences, 7(2), 1420–1450. DOI: 10.1137/130946782
Gillis, N. (2020). Nonnegative matrix factorization. SIAM. DOI: 10.1137/1.9781611976410
Hoyer, P. O. (2002). Non-negative sparse coding. In IEEE workshop on neural networks for signal processing, (pp 557–565).
Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of machine learning research, 5, 1457–1469.
Itoh, Y., Duarte, M. F., & Parente, M. (2017). Perfect recovery conditions for non-negative sparse modeling. IEEE Transactions on Signal Processing, 65(1), 69–80. DOI: 10.1109/TSP.2016.2613067
Kim, H., & Park, H. (2007). Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12), 1495–1502. DOI: 10.1093/bioinformatics/btm134
Kim, J., Ramakrishnan, N., Marwah, M., Shah, A., & Park, H. (2013). Regularization paths for sparse nonnegative least squares problems with applications to life cycle assessment tree discovery. In IEEE 13th international conference on data mining, (pp. 360–369).
Lawson, C.L., & Hanson, R.J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics.
Lee, D. D., & Seung, H. S. (1997). Unsupervised learning by convex and conic coding. In Advances in neural information processing systems, (pp. 515–521).
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791. DOI: 10.1038/44565
Ma, W. K., Bioucas-Dias, J. M., Chan, T. H., Gillis, N., Gader, P., Plaza, A. J., Ambikapathi, A., & Chi, C. Y. (2013). A signal processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal Processing Magazine, 31(1), 67–81. DOI: 10.1109/MSP.2013.2279731
Mohimani, G. H., Babaie-Zadeh, M., & Jutten, C. (2007). Fast sparse representation based on smoothed ℓ norm. In International conference on independent component analysis and signal separation (pp. 389–396). Springer.
Morup, M., Madsen, K. H., & Hansen, L. K. (2008). Approximate L0 constrained non-negative matrix and tensor factorization. In 2008 IEEE international symposium on circuits and systems (pp. 1328–1331). IEEE.
Nadisic, N., Vandaele, A., Gillis, N., & Cohen, J. E. (2020). Exact sparse nonnegative least squares. In 2020 IEEE international conference on acoustics, speech and signal processing (pp. 5395–5399).
Nadisic, N., Vandaele, A., Gillis, N., & Cohen, J. E. (2021). Exact biobjective k-sparse nonnegative least squares. In EUSIPCO 2021-29th European signal processing conference (pp. 2079–2083).
Nguyen, T. T., Idier, J., Soussen, C., & Djermoune, E. H. (2019). Non-negative orthogonal greedy algorithms. IEEE Transactions on Signal Processing, 67(21), 5643–5658. DOI: 10.1109/TSP.2019.2943225
Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis, 20(3), 389–403. DOI: 10.1093/imanum/20.3.389
Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar conference on signals, systems and computers (pp. 40–44).
Peharz, R., & Pernkopf, F. (2012). Sparse nonnegative matrix factorization with ℓ -constraints. Neurocomputing, 80, 38–46. DOI: 10.1016/j.neucom.2011.09.024
Portugal, L. F., Judice, J. J., & Vicente, L. N. (1994). A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation, 63(208), 625–643. DOI: 10.1090/S0025-5718-1994-1250776-4
Soussen, C., Gribonval, R., Idier, J., & Herzet, C. (2013). Joint k -step analysis of orthogonal matching pursuit and orthogonal least squares. IEEE Transactions on Information Theory, 59(5), 3158–3174. DOI: 10.1109/TIT.2013.2238606
Stojnic, M., Parvaresh, F., & Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Transactions on Signal Processing, 57(8), 3075–3085. DOI: 10.1109/TSP.2009.2020754
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information theory, 50(10), 2231–2242. DOI: 10.1109/TIT.2004.834793
Tropp, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory, 52(3), 1030–1051. DOI: 10.1109/TIT.2005.864420
Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal processing, 86(3), 572–588. DOI: 10.1016/j.sigpro.2005.05.030
Yaghoobi, M., Wu, D., & Davies, M. E. (2015). Fast non-negative orthogonal matching pursuit. IEEE Signal Processing Letters, 22(9), 1229–1233. DOI: 10.1109/LSP.2015.2393637
Zhu, F. (2017). Hyperspectral unmixing: Ground truth labeling, datasets, benchmark performances and survey. Preprint arXiv:1708.05125.