[en] The search for less expensive and viable products is always one of the challenges for research development. Commonly, the synthesis of coordination compounds involves expensive ligands, through expensive and low-yield routes, in addition to generating toxic and unusable residues. In this work, the organic ligand used is derived from the resin of a reforestation tree, Pinus elliottii var. elliottii. The synthesis method used Pinus resin and an aqueous solution of vanadium(III) chloride at a temperature of 80 °C. The procedure does not involve organic solvents and does not generate toxic residues, thus imparting the complex formation reaction a green chemistry character. The synthesis resulted in an unprecedented oxovanadium(IV)-bis(abietate) complex, which was characterized by mass spectrometry (MS), chemical analysis (CHN), vibrational (FTIR) and electronic spectra (VISIBLE), X-ray diffraction (XRD), and thermal analysis (TG/DTA). Colorimetric studies were performed according to the CIELAB color space. The structural formula found, consisted of a complex containing two abietate ligands, [VO(C20H29O2)2]. The VO(IV)-bis(abietate) complex was applied against microorganisms and showed promising results in antibacterial and antifungal activity. The best result of inhibitory action was against the strains of Gram-positive bacteria S. aureus and L. monocytogenes, with minimum inhibitory concentration (MIC) values of 62.5 and 125 μmol L-1, respectively. For Gram-negative strains the results were 500 μmol L-1 for E. coli; and 1000 μmol L-1 for Salmonella enterica Typhimurium. Antifungal activity was performed against Candida albicans, where the MIC was 15.62 μmol L-1, and for C. tropicalis it was 62.5 μmol L-1. According to the MFC analysis, the complex presented, in addition to the fungistatic action, a fungicidal action, as there was no growth of fungi on the plates tested. The results found for the tests demonstrate that the VO(IV)-bis(abietate) complex has great potential as an antimicrobial and mainly antifungal agent. In this way, the pigmented ink with antimicrobial activity could be used in environments with a potential risk of contamination, preventing the spread of microorganisms harmful to health.
Disciplines :
Chemistry
Author, co-author :
Schons, Aline B ; Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
Correa, Jamille S; Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
Appelt, Patricia; Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
Meneguzzi, Daiane; Department of Chemistry, Universidade Tecnológica Federal do Paraná, UTFPR, Via do Conhecimento, KM 01, Fraron, Pato Branco 85503-390, PR, Brazil
Cunha, Mário A A ; Department of Chemistry, Universidade Tecnológica Federal do Paraná, UTFPR, Via do Conhecimento, KM 01, Fraron, Pato Branco 85503-390, PR, Brazil
Toma, Henrique E ; Institute of Chemistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
Anaissi, Fauze J ; Department of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
Language :
English
Title :
Eco-Friendly Synthesis of an Oxovanadium(IV)-bis(abietate) Complex with Antimicrobial Action.
Research Institute for Materials Science and Engineering
Funders :
National Council for Scientific and Technological Development Coordenação de Aperfeicoamento de Pessoal de Nível Superior
Funding text :
A.B.S. appreciates the CAPES (grant number 88887.628497/2021-00) for a graduate scholarship. F.J.A. is thankful for a CNPq Productivity grant (308625/2019-6) and the grant CNPq (427127/2018-1). C.B. is a research associate of FRS-FNRS, Belgium.The authors thank the funding agencies: CNPq, Capes, Finep, and Fundação Araucária. We thank the IQ-USP Analytical Center for the mass spectrometry (MS) data. To the GTbio laboratory (UTFPR, Pato Branco, Brazil) for the antimicrobial tests.
Correa J.S. Primo J.O. Bittencourt C. Horsth D.F.L. Radovanovic E. Silveira A.T. Jr. Toma H.E. Zanette C.M. Anaissi F.J. Ecofriendly Synthesis of Zn-Abietate Complex Derived from Pinus elliottii Resin and Its Application as an Antibacterial Pigment against S. aureus and E. coli Dye. Pigment. 2022 197 109946 10.1016/j.dyepig.2021.109946
de Souza Correa J. dos Santos R.R. Anaissi F.J. Purification and Characterization of Colophony Extracted of Pinus elliottii (engelm, var. elliottii) Orbital 2018 10 200 203 10.17807/orbital.v10i3.1100
Bala R. Kumari P. Sood S. Phougat H. Kumar A. Singh K. Pyrazole-4-Carboxylic Acids from Vanadium-Catalyzed Chemical Transformation of Pyrazole-4-Carbaldehydes J. Heterocycl. Chem. 2019 56 1787 1793 10.1002/jhet.3546
Lu X. Ye J. Zhang D. Xie R. Bogale R.F. Sun Y. Zhao L. Zhao Q. Ning G. Silver Carboxylate Metal-Organic Frameworks with Highly Antibacterial Activity and Biocompatibility J. Inorg. Biochem. 2014 138 114 121 10.1016/j.jinorgbio.2014.05.005
Lin S. Liu X. Tan L. Cui Z. Yang X. Yeung K.W.K. Pan H. Wu S. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity ACS Appl. Mater. Interfaces 2017 9 19248 19257 10.1021/acsami.7b04810
Correa J.S. Primo J.O. Bittencourt C. Horsth D.F.L. Radovanovic E. Silveira A.T. Jr. Toma H.E. Zanette C.M. Anaissi F.J. Experimental Data for Green Synthesis of Zn-Abietate Complex from Natural Resin Data Brief 2022 40 107776 10.1016/j.dib.2021.107776
Palion-Gazda J. Luz A. Raposo L.R. Choroba K. Nycz J.E. Bieńko A. Lewińska A. Erfurt K. Baptista P.V. Machura B. et al. Vanadium(IV) Complexes with Methyl-Substituted 8-Hydroxyquinolines: Catalytic Potential in the Oxidation of Hydrocarbons and Alcohols with Peroxides and Biological Activity Molecules 2021 26 6364 10.3390/molecules26216364
Langeslay R.R. Kaphan D.M. Marshall C.L. Stair P.C. Sattelberger A.P. Delferro M. Catalytic Applications of Vanadium: A Mechanistic Perspective Chem. Rev. 2019 119 2128 2191 10.1021/acs.chemrev.8b00245
Wang Y. Lin X.M. Bai F.Y. Sun L.X. Novel Vanadium Complexes with Rigid Carboxylate Ligands: Synthesis, Structure and Catalytic Bromine Dynamics of Phenol Red J. Mol. Struct. 2017 1149 379 386 10.1016/j.molstruc.2017.07.015
Shriver D. Weller M. Overton T. Rourke J. Armstrong F. Inorganic Chemistry 6th ed. Oxford University Press Oxford, MS, USA 2014 1-4292-9906-1
Rayner-Canham G. Overton T. Química Inorgânica Descritiva 5th ed. 2015 9788521626138 Available online: https://www.amazon.com/Qu%C3%ADmica-Inorg%C3%A2nica-Descritiva-Portuguese-Brasil/dp/8521626134 (accessed on 5 October 2022)
Ścibior A. Pietrzyk Ł. Plewa Z. Skiba A. Vanadium: Risks and Possible Benefits in the Light of a Comprehensive Overview of Its Pharmacotoxicological Mechanisms and Multi-Applications with a Summary of Further Research Trends J. Trace Elem. Med. Biol. 2020 61 126508 10.1016/j.jtemb.2020.126508 32305626
Khosravan M. Abdolahi L. Ebrahimipour S.Y. A Novel Anionic Di-Oxido Vanadium(V) Schiff Base Complex: Synthesis, Spectral Characterization, X Ray Crystal Structure, Catalytic Activity for the Preparation of Tetrahydro-4H-Chromene Derivatives and Antibacterial Properties Inorg. Chem. Commun. 2021 128 108561 10.1016/j.inoche.2021.108561
Nikolaou S. da Silva C.F.N. Considerações Sobre Textos Que Tratam do Desenvolvimento de Metalofármacos de Rutênio Quim. Nova 2018 41 833 838 10.21577/0100-4042.20170228
Appelt P. Fagundes F.D. Facchin G. Gabriela Kramer M. Back D.F. Cunha M.A.A. Sandrino B. Wohnrath K. De Araujo M.P. Ruthenium (II) Complexes Containing 2-Mercaptothiazolinates as Ligands and Evaluation of Their Antimicrobial Activity Inorg. Chim. Acta 2015 436 152 158 10.1016/j.ica.2015.07.022
Briand G.G. Burford N. Bismuth Compounds and Preparations with Biological or Medicinal Relevance Chem. Rev. 1999 99 2601 2658 10.1021/cr980425s
Yang N. Tanner J.A. Zheng B.J. Watt R.M. He M.L. Lu L.Y. Jiang J.Q. Shum K.T. Lin Y.P. Wong K.L. et al. Bismuth Complexes Inhibit the SARS Coronavirus Angew. Chem. Int. Ed. 2007 46 6464 6468 10.1002/anie.200701021
Datta C. Das D. Mondal P. Chakraborty B. Sengupta M. Bhattacharjee C.R. Novel Water Soluble Neutral Vanadium(IV)-Antibiotic Complex: Antioxidant, Immunomodulatory and Molecular Docking Studies Eur. J. Med. Chem. 2015 97 214 224 10.1016/j.ejmech.2015.05.005
Scalese G. Machado I. Salinas G. Pérez-díaz L. Gambino D. Heteroleptic Oxidovanadium(V) Complexes with Activity against Infective and Non-Infective Stages of Trypanosoma Cruzi Molecules 2021 26 5375 10.3390/molecules26175375
Wei Y.B. Yang X. Da Synthesis, Characterization and Anti-Diabetic Therapeutic Potential of a New Benzyl Acid-Derivatized Kojic Acid Vanadyl Complex BioMetals 2012 25 1261 1268 10.1007/s10534-012-9587-x
Barry N.P.E. Sadler P.J. Exploration of the Medical Periodic Table: Towards New Targets Chem. Commun. 2013 49 5106 5131 10.1039/c3cc41143e
Berto S. Alladio E. Daniele P.G. Laurenti E. Bono A. Sgarlata C. Valora G. Cappai R. Lachowicz J.I. Nurchi V.M. Oxovanadium(IV) Coordination Compounds with Kojic Acid Derivatives in Aqueous Solution Molecules 2019 24 3768 10.3390/molecules24203768 31635063
Understanding the CIE L*C*h Color Space Available online: https://sensing.konicaminolta.us/us/blog/understanding-the-cie-lch-color-space/ (accessed on 9 September 2022)
Farzanfar J. Ghasemi K. Rezvani A.R. Delarami H.S. Ebrahimi A. Hosseinpoor H. Eskandari A. Rudbari H.A. Bruno G. Synthesis, Characterization, X-Ray Crystal Structure, DFT Calculation and Antibacterial Activities of New Vanadium(IV, V) Complexes Containing Chelidamic Acid and Novel Thiourea Derivatives J. Inorg. Biochem. 2015 147 54 64 10.1016/j.jinorgbio.2015.02.007 25770009
Wazalwar S.S. Bhave N.S. Dikundwar A.G. Ali P. Microwave Assisted Synthesis and Antimicrobial Study of Schiff Base Vanadium(IV) Complexes of Phenyl Esters of Amino Acids Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2011 41 459 464 10.1080/15533174.2011.568427
Lim E.J. Leng E.G.T. Tram N.D.T. Periayah M.H. Ee P.L.R. Barkham T.M.S. Poh Z.S. Verma N.K. Lakshminarayanan R. Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B Molecules 2022 27 1438 10.3390/molecules27041438
Melchor-Martínez E.M. Tamez-Fernández J.F. González-González G.M. Silva-Mares D.A. Waksman-Minsky N. Pérez-López L.A. Rivas-Galindo V.M. Active Flavonoids from Colubrina greggii var. greggii S. Watson against Clinical Isolates of Candida spp. Molecules 2021 26 5760 10.3390/molecules26195760
Adam M.S.S. El-Hady O.M. Makhlouf M.M. Bayazeed A. El-Metwaly N.M. Mohamad A.D.M. Effect of Oxy-Vanadium (IV) and Oxy-Zirconium (IV) Ions in O,N-Bidentate Arylhydrazone Complexes on Their Catalytic and Biological Potentials That Supported via Computerized Usages J. Taiwan Inst. Chem. Eng. 2022 132 104168 10.1016/j.jtice.2021.104168
Clinical and Laboratory Standarts Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically 60th ed. NCCLS document M7-A6, Suite 1400 Clinical and Laboratory Standarts Institute Wayne, PA, USA 2003 610.688.0700
Clinical and Laboratory Standarts Institute (CLSI) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts 3rd ed. Clinical and Laboratory Standarts Institute Wayne, PA, USA 2008 610.688.0700