[en] Climate, landscape composition, management practice, and wild bee pollination are all variables thought to play significant roles in commercial apple production. However, how these variables affect production efficiency under field-realistic conditions has not been investigated at large geographical scales. We combined intensive standardized field surveys (using netting and pan traps) with structural equation models to explore the relative impact of biotic and abiotic variables on bee diversity, apple yield and fruit quality, and their ability to represent reliable proxies of apple production. Here we show that apple yields are mainly driven by management practice, without evidence for a significantly superior contribution by managed honey bees. Total wild bee diversity, while negatively correlated with honey bee dominance, promoted apple quality by enhancing seed set number. Our study demonstrates that even across a broad geographical range there is potential to harness wild bee diversity as nature-based solution and as a substitute to an exclusive reliance on honey bees in the context of commercial apple production.
Disciplines :
Agriculture & agronomy Entomology & pest control Zoology
Author, co-author :
Weekers, Timothy; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Marshall, Leon; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Leclercq, Nicolas; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Wood, Thomas J.; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
Cejas, Diego; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
Drepper, Bianca; Division of Forest, Nature and Landscape, University of Leuven, Leuven, Belgium
Garratt, Michael; School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
Hutchinson, Louise; School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
Roberts, Stuart; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Bosch, Jordi; Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, Spain
Roquer-Beni, Laura; Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, Spain
Lhomme, Patrick ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Michez, Denis ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie
Molenberg, Jean-Marc; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Smagghe, Guy; Department of Plants and Crops, Ghent University, Ghent, Belgium
Vandamme, Peter; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
Vereecken, Nicolas J.; Agroecology Lab, Université libre de Bruxelles, Brussels, Belgium
Fonds Wetenschappelijk Onderzoek Fonds De La Recherche Scientifique - FNRS
Funding text :
The FNRS/FWO joint program “EOS – Excellence of Science” for the project “CliPS: Climate change and its effects on Pollination Services (project 30947854)” funded and made it possible to elaborate this study. Thanks to the apple growers who allowed access to their land and shared their knowledge. Thanks to A.Pauly, A.Dorchin and D.de Grave for providing species identification and help with the species traits. Thanks to E.Hulsmans, L.Fockaert for contacting the producers and finding the study sites. Many thanks to A.Anselmo, A.Danneels, A.Vandewal, B.Martinet, B.Valkenborg, E.Zambra, F.Denis, G.Ghisbain, H.Hainaut, H.Van Ryckel, M.Gerard, N.Dudermel, S.De Greef, V.Eklund and V.Nocent for assistance in conducting fieldwork. Should the manuscript be accepted, the data supporting the results will be archived in an appropriate public repository (Dryad, Figshare or Hal) and the data DOI will be included at the end of the article.
Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., Klein, A.M., Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18 (2008), 1572–1575, 10.1016/j.cub.2008.08.066.
Allen-Perkins, A., Magrach, A., Dainese, M., Garibaldi, L.A., Kleijn, D., Rader, R., Reilly, J.R., Winfree, R., Lundin, O., McGrady, C.M., Brittain, C., Biddinger, D.J., Artz, D.R., Elle, E., Hoffman, G., Ellis, J.D., Daniels, J., Gibbs, J., Campbell, J.W., Brokaw, J., Wilson, J.K., Mason, K., Ward, K.L., Gundersen, K.B., Bobiwash, K., Gut, L., Rowe, L.M., Boyle, N.K., Williams, N.M., Joshi, N.K., Rothwell, N., Gillespie, R.L., Isaacs, R., Fleischer, S.J., Peterson, S.S., Rao, S., Pitts-Singer, T.L., Fijen, T., Boreux, V., Rundlöf, M., Viana, B.F., Klein, A.-M., Smith, H.G., Bommarco, R., Carvalheiro, L.G., Ricketts, T.H., Ghazoul, J., Krishnan, S., Benjamin, F.E., Loureiro, J., Castro, S., Raine, N.E., Groot, G.A., Horgan, F.G., Hipólito, J., Smagghe, G., Meeus, I., Eeraerts, M., Potts, S.G., Kremen, C., García, D., Miñarro, M., Crowder, D.W., Pisanty, G., Mandelik, Y., Vereecken, N.J., Leclercq, N., Weekers, T., Lindstrom, S.A.M., Stanley, D.A., Zaragoza-Trello, C., Nicholson, C.C., Scheper, J., Rad, C., Marks, E.A.N., Mota, L., Danforth, B., Park, M., Bezerra, A.D.M., Freitas, B.M., Mallinger, R.E., Silva, F.O., Willcox, B., Ramos, D.L., Silva e Silva, F.D., Lázaro, A., Alomar, D., González-Estévez, M.A., Taki, H., Cariveau, D.P., Garratt, M.P.D., Nabaes Jodar, D.N., Stewart, R.I.A., Ariza, D., Pisman, M., Lichtenberg, E.M., Schüepp, C., Herzog, F., Entling, M.H., Dupont, Y.L., Michener, C.D., Daily, G.C., Ehrlich, P.R., Burns, K.L.W., Vilà, M., Robson, A., Howlett, B., Blechschmidt, L., Jauker, F., Schwarzbach, F., Nesper, M., Diekötter, T., Wolters, V., Castro, H., Gaspar, H., Nault, B.A., Badenhausser, I., Petersen, J.D., Tscharntke, T., Bretagnolle, V., Chan, D.S.W., Chacoff, N., Andersson, G.K.S., Jha, S., Colville, J.F., Veldtman, R., Coutinho, J., Bianchi, F.J.J.A., Sutter, L., Albrecht, M., Jeanneret, P., Zou, Y., Averill, A.L., Saez, A., Sciligo, A.R., Vergara, C.H., Bloom, E.H., Oeller, E., Badano, E.I., Loeb, G.M., Grab, H., Ekroos, J., Gagic, V., Cunningham, S.A., Åström, J., Cavigliasso, P., Trillo, A., Classen, A., Mauchline, A.L., Montero-Castaño, A., Wilby, A., Woodcock, B.A., Sidhu, C.S., Steffan-Dewenter, I., Vogiatzakis, I.N., Herrera, J.M., Otieno, M., Gikungu, M.W., Cusser, S.J., Nauss, T., Nilsson, L., Knapp, J., Ortega-Marcos, J.J., González, J.A., Osborne, J.L., Blanche, R., Shaw, R.F., Hevia, V., Stout, J., Arthur, A.D., Blochtein, B., Szentgyorgyi, H., Li, J., Mayfield, M.M., Woyciechowski, M., Nunes-Silva, P., Oliveira, R.H., Henry, S., Simmons, B.I., Dalsgaard, B., Hansen, K., Sritongchuay, T., O'Reilly, A.D., García, F.J.C., Parra, G.N., Pigozo, C.M., Bartomeus, I., CropPol: a dynamic, open and global database on crop pollination. Ecology, 2021, 10.1002/ecy.3614.
Angelella, G.M., McCullough, C.T., O'Rourke, M.E., Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips. Sci. Rep., 11, 2021, 10.1038/s41598-021-81967-1.
Bänsch, S., Tscharntke, T., Ratnieks, F.L.W., Härtel, S., Westphal, C., Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ., 291, 2020, 106792, 10.1016/j.agee.2019.106792.
Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (2015), 1–48, 10.18637/jss.v067.i01.
Blaauw, B.R., Isaacs, R., Clough, Y., Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51:4 (2014), 890–898.
Blitzer, E.J., Gibbs, J., Park, M.G., Danforth, B.N., Pollination services for apple are dependent on diverse wild bee communities. Agric. Ecosyst. Environ. 221 (2016), 1–7, 10.1016/j.agee.2016.01.004.
Boyle, E.E., Adamowicz, S.J., 2015. Community phylogenetics: Assessing tree reconstruction methods and the utility of DNA barcodes. PLoS ONE 10, e0126662. doi: 10.1371/journal.pone.0126662.
Breeze, T.D., Bailey, A.P., Balcombe, K.G., Potts, S.G., Pollination services in the UK: How important are honeybees?. Agric. Ecosyst. Environ. 142 (2011), 137–143, 10.1016/j.agee.2011.03.020.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., Smets, B., Copernicus global land cover layers-collection 2. Remote Sensing, 12(6), 2020, 1044.
Bui, T.A.T., Stridh, H., Molin, M., Influence of weather conditions on the quality of ‘Ingrid Marie’ apples and their susceptibility to grey mould infection. J. Agric. Food Res., 3, 2021, 100104, 10.1016/j.jafr.2021.100104.
Cadotte, M.W., Carscadden, K., Mirotchnick, N., Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48 (2011), 1079–1087, 10.1111/j.1365-2664.2011.02048.x.
Chao, A., Chiu, C.-H.-H., Jost, L., Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45 (2014), 297–324, 10.1146/annurev-ecolsys-120213-091540.
Council Regulation, 2007. No. 834/2007 of 28 June 2007 on organic production and labelling 459 of organic products and repealing Regulation (EEC) No. 2092/91 [WWW Document]. Bundesministerium für Ernährung und Landwirtschaft. https://doi.org/10.6.2013.
Dorchin, A., Dafni, A., Izhaki, I., Sapir, Y., Vereecken, N.J., Patterns and drivers of wild bee community assembly in a Mediterranean IUCN important plant area. Biodivers. Conserv. 27 (2018), 695–717, 10.1007/s10531-017-1459-9.
Droege, S., Tepedino, V.J., Lebuhn, G., Link, W., Minckley, R.L., Chen, Q., Conrad, C., Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conservation and Diversity 3 (2010), 15–23, 10.1111/j.1752-4598.2009.00074.x.
FAOSTAT, 2020. Crops and livestock products [WWW Document]. Food and Agriculture Organisation of the United Nations. URL http://www.fao.org/faostat (accessed 6.19.20).
Földesi, R., Kovács-Hostyánszki, A., Kőrösi, Á., Somay, L., Elek, Z., Markó, V., Sárospataki, M., Bakos, R., Varga, Á., Nyisztor, K., Báldi, A., Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18 (2016), 68–75, 10.1111/afe.12135.
Garibaldi, L.A., Aizen, M.A., Klein, A.M., Cunningham, S.A., Harder, L.D., Global growth and stability of agricultural yield decrease with pollinator dependence. Proc Natl Acad Sci U S A 108 (2011), 5909–5914, 10.1073/pnas.1012431108.
Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., Kremen, C., Carvalheiro, L.G., Harder, L.D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N.P., Dudenhöffer, J.H., Freitas, B.M., Ghazoul, J., Greenleaf, S., Hipólito, J., Holzschuh, A., Howlett, B., Isaacs, R., Javorek, S.K., Kennedy, C.M., Krewenka, K.M., Krishnan, S., Mandelik, Y., Mayfield, M.M., Motzke, I., Munyuli, T., Nault, B.A., Otieno, M., Petersen, J., Pisanty, G., Potts, S.G., Rader, R., Ricketts, T.H., Rundlöf, M., Seymour, C.L., Schüepp, C., Szentgyörgyi, H., Taki, H., Tscharntke, T., Vergara, C.H., Viana, B.F., Wanger, T.C., Westphal, C., Williams, N., Klein, A.M., Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 1979:340 (2013), 1608–1611, 10.1126/science.1230200.
Garratt, M.P.D., Breeze, T.D., Boreux, V., Fountain, M.T., McKerchar, M., Webber, S.M., Coston, D.J., Jenner, N., Dean, R., Westbury, D.B., Biesmeijer, J.C., Potts, S.G., 2016. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity. PLOS ONE 11, e0153889. doi: 10.1371/JOURNAL.PONE.0153889.
Garratt, M.P.D., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J.C., Potts, S.G., Avoiding a bad apple: insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184 (2014), 34–40, 10.1016/j.agee.2013.10.032.
Garratt, M.P.D., de Groot, G.A., Albrecht, M., Bosch, J., Breeze, T.D., Fountain, M.T., Klein, A.M., McKerchar, M., Park, M., Paxton, R.J., Potts, S.G., Pufal, G., Rader, R., Senapathi, D., Andersson, G.K.S., Bernauer, O.M., Blitzer, E.J., Boreux, V., Campbell, A.J., Carvell, C., Földesi, R., García, D., Garibaldi, L.A., Hambäck, P.A., Kirkitadze, G., Kovács-Hostyánszki, A., Martins, K.T., Miñarro, M., O'Connor, R., Radzeviciute, R., Roquer-Beni, L., Samnegård, U., Scott, L., Vereecken, N.J., Wäckers, F., Webber, S.M., Japoshvili, G., Zhusupbaeva, A., Opportunities to reduce pollination deficits and address production shortfalls in an important insect-pollinated crop. Ecol. Appl., 31, 2021, e02445, 10.1002/eap.2445.
Gervais, A., Bélisle, M., Mazerolle, M.J., Fournier, V., Landscape enhancements in apple orchards: Higher bumble bee queen species richness, but no effect on apple quality. Insects, 12(5), 2021, 421.
Geslin, B., Aizen, M.A., Garcia, N., Pereira, A.J., Vaissière, B.E., Garibaldi, L.A., The impact of honey bee colony quality on crop yield and farmers’ profit in apples and pears. Agric. Ecosyst. Environ. 248 (2017), 153–161, 10.1016/j.agee.2017.07.035.
Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M., Ropars, L., Rollin, O., Thébault, E., Vereecken, N.J., 2017b. Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions, in: Advances in Ecological Research. Academic Press Inc., pp. 147–199. doi: 10.1016/bs.aecr.2016.10.007.
Härtel, S., Steffan-Dewenter, I., Ecology: honey bee foraging in human-modified landscapes. Curr. Biol. 24:11 (2014), R524–R526.
Hennessy, G., Harris, C., Eaton, C., Wright, P., Jackson, E., Goulson, D., Ratnieks, F.F.L.W., Gone with the wind: effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 161 (2020), 23–31, 10.1016/j.anbehav.2019.12.018.
Henríquez-Piskulich, P.A., Schapheer, C., Vereecken, N.J., Villagra, C., Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case study. Sustainability (Switzerland), 13(12), 2021, 6728.
Jiang, S., Zhang, H., Cong, W., Liang, Z., Ren, Q., Wang, C., Zhang, F., Jiao, X., Multi-objective optimization of smallholder apple production: Lessons from the Bohai Bay region. Sustainability (Switzerland), 12(16), 2020, 6496.
Joshi, N.K., Otieno, M., Rajotte, E.G., Fleischer, S.J., Biddinger, D.J., Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front. Ecol. Evol. 4 (2016), 1–9, 10.3389/fevo.2016.00038.
Kammerer, M.A., Biddinger, D.J., Joshi, N.K., Rajotte, E.G., Mortensen, D.A., Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards. Landscape Ecol. 31 (2016), 2459–2469, 10.1007/s10980-016-0416-4.
Kammerer, M.A., Goslee, S.C., Douglas, M.R., Tooker, J.F., Grozinger, C.M., Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Glob. Change Biol. 27 (2021), 1250–1265, 10.1111/gcb.15485.
Karagiannis, E., Michailidis, M., Skodra, C., Molassiotis, A., Tanou, G., Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiol. Biochem. 166 (2021), 270–277, 10.1016/j.plaphy.2021.05.037.
Kleijn, D., Bommarco, R., Fijen, T.P.M., Garibaldi, L.A., Potts, S.G., van der Putten, W.H., Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 34 (2019), 154–166, 10.1016/j.tree.2018.11.002.
Klein, A.-M., Hendrix, S.D., Clough, Y., Scofield, A., Kremen, C., Vereecken, N., Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology 17:1 (2015), 201–208.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., Importance of pollinators in changing landscapes for world crops. Proc. R. Society B: Biol. Sci. 274 (2007), 303–313, 10.1098/rspb.2006.3721.
Kremen, C., Miles, A., Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc., 17, 2012, 10.5751/ES-05035-170440.
Lázaro, A., Müller, A., Ebmer, A.W., Dathe, H.H., Scheuchl, E., Schwarz, M., Risch, S., Pauly, A., Devalez, J., Tscheulin, T., Gómez-Martínez, C., Papas, E., Pickering, J., Waser, N.M., Petanidou, T., Gómez-Martínez, C., Papas, E., Pickering, J., Waser, N.M., Petanidou, T., Impacts of beekeeping on wild bee diversity and pollination networks in the Aegean Archipelago. Ecography, 1–13, 2021, 10.1111/ecog.05553.
Lefcheck, J.S., piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7 (2016), 573–579, 10.1111/2041-210X.12512.
Li, D., hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Software, 3, 2018, 1041 https://doi.org/10.21105/joss.01041.
Mallinger, R.E., Gaines-Day, H.R., Gratton, C., 2017. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 12, e0189268. https://doi.org/10.1371/journal.pone.0189268.
Mallinger, R.E., Gratton, C., Diekötter, T., Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J. Appl. Ecol. 52:2 (2015), 323–330.
Marshall, L., Biesmeijer, J.C., Rasmont, P., Vereecken, N.J., Dvorak, L., Fitzpatrick, U., Francis, F., Neumayer, J., Ødegaard, F., Paukkunen, J.P.T., Pawlikowski, T., Reemer, M., Roberts, S.P.M., Straka, J., Vray, S., Dendoncker, N., The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24 (2018), 101–116, 10.1111/gcb.13867.
Martins, K.T., Gonzalez, A., Lechowicz, M.J., Pollination services are mediated by bee functional diversity and landscape context. Agric. Ecosyst. Environ. 200 (2015), 12–20, 10.1016/j.agee.2014.10.018.
Mendoza-García, M., Blanco-Moreno, J.M., Chamorro, L., José-María, L., Sans, F.X., Patterns of flower visitor abundance and fruit set in a highly intensified cereal cropping system in a Mediterranean landscape. Agric. Ecosyst. Environ. 254 (2018), 255–263, 10.1016/j.agee.2017.12.001.
Muñoz-Sabater, J., 2019. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store. Climate Data Store.
Musacchi, S., Serra, S., Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 234 (2018), 409–430, 10.1016/j.scienta.2017.12.057.
Normandin, É., Vereecken, N.J., Buddle, C.M., Fournier, V., Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ, 2017, 2017, e3051, 10.7717/peerj.3051.
Ollerton, J., Winfree, R., Tarrant, S., How many flowering plants are pollinated by animals?. Oikos 120 (2011), 321–326, 10.1111/j.1600-0706.2010.18644.x.
Osterman, J., Theodorou, P., Radzevičiūtė, R., Schnitker, P., Paxton, R.J., Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agric. Ecosyst. Environ., 315, 2021, 107383, 10.1016/j.agee.2021.107383.
Pardo, A., Borges, P.A.V., Worldwide importance of insect pollination in apple orchards: a review. Agric. Ecosyst. Environ., 293, 2020, 106839, 10.1016/j.agee.2020.106839.
Pardo, A., Lopes, D.H., Fierro, N., Borges, P.A.V., Limited effect of management on apple pollination: a case study from an oceanic island. Insects 11 (2020), 1–13, 10.3390/insects11060351.
Park, M.G., Joshi, N.K., Rajotte, E.G., Biddinger, D.J., Losey, J.E., Danforth, B.N., Apple grower pollination practices and perceptions of alternative pollinators in New York and Pennsylvania. Renewable Agric. Food Syst. 35 (2020), 1–14, 10.1017/S1742170518000145.
Parker, A.J., Tran, J.L., Ison, J.L., Bai, J.D.K., Weis, A.E., Thomson, J.D., Pollen packing affects the function of pollen on corbiculate bees but not non-corbiculate bees. Arthropod-Plant Interactions 9 (2015), 197–203, 10.1007/s11829-015-9358-z.
Peck, G.M., Andrews, P.K., Reganold, J.P., Fellman, J.K., Apple orchard productivity and fruit quality under organic, conventional, and integrated management. HortScience 41 (2006), 99–107, 10.21273/hortsci.41.1.99.
Pérez-Méndez, N., Andersson, G.K.S., Requier, F., Hipólito, J., Aizen, M.A., Morales, C.L., García, N., Gennari, G.P., Garibaldi, L.A., Diekötter, T., The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57:3 (2020), 599–608.
Petchey, O.L., Gaston, K.J., Functional diversity: Back to basics and looking forward. Ecol. Lett. 9 (2006), 741–758, 10.1111/j.1461-0248.2006.00924.x.
Petkovsek, M.M., Slatnar, A., Stampar, F., Veberic, R., The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 90 (2010), 2366–2378, 10.1002/jsfa.4093.
Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., Safeguarding pollinators and their values to human well-being. Nature 540:7632 (2016), 220–229.
Prendergast, K.S., Leclercq, N., Vereecken, N.J., Honey bees (Hymenoptera: Apidae) outnumber native bees in Tasmanian apple orchards: Perspectives for balancing crop production and native bee conservation. Austral Entomol. 60 (2021), 422–435, 10.1111/aen.12521.
Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P.D., Howlett, B.G., Winfree, R., Cunningham, S.A., Mayfield, M.M., Arthur, A.D., Andersson, G.K.S., Bommarco, R., Brittain, C., Carvalheiro, L.G., Chacoff, N.P., Entling, M.H., Foully, B., Freitas, B.M., Gemmill-Herren, B., Ghazoul, J., Griffin, S.R., Gross, C.L., Herbertsson, L., Herzog, F., Hipólito, J., Jaggar, S., Jauker, F., Klein, A.M., Kleijn, D., Krishnan, S., Lemos, C.Q., Lindström, S.A.M., Mandelik, Y., Monteiro, V.M., Nelson, W., Nilsson, L., Pattemore, D.E., Pereira, N.D.O., Pisanty, G., Potts, S.G., Reemer, M., Rundlöf, M., Sheffield, C.S., Scheper, J., Schüepp, C., Smith, H.G., Stanley, D.A., Stout, J.C., Szentgyörgyi, H., Taki, H., Vergara, C.H., Viana, B.F., Woyciechowski, M., Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 146–151, 10.1073/pnas.1517092112.
Radzevičiūtė, R., Theodorou, P., Schlegel, M., Paxton, R.J., A two-part modelling approach reveals a positive effect of pollinator biodiversity in boosting the pollination of apple flowers. Agric. Ecosyst. Environ., 306, 2021, 107197, 10.1016/j.agee.2020.107197.
Ramírez, F., Davenport, T.L., Apple pollination: a review. Sci. Hortic. 162 (2013), 188–203, 10.1016/j.scienta.2013.08.007.
Roquer-Beni, L., Alins, G., Arnan, X., Boreux, V., García, D., Hambäck, P.A., Happe, A.-K., Klein, A.-M., Miñarro, M., Mody, K., Porcel, M., Rodrigo, A., Samnegård, U., Tasin, M., Bosch, J., Management-dependent effects of pollinator functional diversity on apple pollination services: a response-effect trait approach. J. Appl. Ecol. 58:12 (2021), 2843–2853.
Roussos, P.A., Gasparatos, D., Apple tree growth and overall fruit quality under organic and conventional orchard management. Sci. Hortic. 123 (2009), 247–252, 10.1016/j.scienta.2009.09.011.
RStudioTeam, Integrated development for R. RStudio, 42, 2020, 14.
Samnegård, U., Alins, G., Boreux, V., Bosch, J., García, D., Happe, A.-K., Klein, A.-M., Miñarro, M., Mody, K., Porcel, M., Rodrigo, A., Roquer-Beni, L., Tasin, M., Hambäck, P.A., Firn, J., Management trade-offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. J. Appl. Ecol. 56:4 (2019), 802–811.
Scheper, J., Bommarco, R., Holzschuh, A., Potts, S.G., Riedinger, V., Roberts, S.P.M., Rundlöf, M., Smith, H.G., Steffan-Dewenter, I., Wickens, J.B., Wickens, V.J., Kleijn, D., Diamond, S., Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52:5 (2015), 1165–1175.
Sheffield, C.S., Ngo, H.T., Azzu, N., 2016. A Manual on Apple Pollination.
Shennan, C., Krupnik, T.J., Baird, G., Cohen, H., Forbush, K., Lovell, R.J., Olimpi, E.M., Organic and conventional agriculture: a useful framing?. Annu. Rev. Environ. Resour. 42 (2017), 317–346, 10.1146/annurev-environ-110615-085750.
Stefan, V., 2019. geobuffer : Geodesic buffer around points (long, lat) using metric radius.
Stevenson, C.R., Davies, C., Rowntree, J.K., 2017. Biodiversity in agricultural landscapes: the effect of apple cultivar on epiphyte diversity. Ecol. Evolution 7, 1250–1258. doi: 10.1002/ece3.2683.
Valavanidis, A., Vlachogianni, T., Psomas, A., Zovoili, A., Siatis, V., Polyphenolic profile and antioxidant activity of five apple cultivars grown under organic and conventional agricultural practices. Int. J. Food Sci. Technol. 44 (2009), 1167–1175, 10.1111/j.1365-2621.2009.01937.x.
Vanbergen, A.J., Aizen, M.A., Cordeau, S., Garibaldi, L.A., Garratt, M.P.D., Kovács-Hostyánszki, A., Lecuyer, L., Ngo, H.T., Potts, S.G., Settele, J., Skrimizea, E., Young, J.C., 2020. Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security, 1st ed, Advances in Ecological Research. Elsevier Ltd. doi: 10.1016/bs.aecr.2020.08.002.
Varah, A., Jones, H., Smith, J., Potts, S.G., Temperate agroforestry systems provide greater pollination service than monoculture. Agric. Ecosyst. Environ., 301, 2020, 107031, 10.1016/j.agee.2020.107031.
Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33 (2002), 475–505, 10.1146/annurev.ecolsys.33.010802.150448.
Weekers, T., Marshall, L., Leclercq, N., Wood, T.J., Cejas, D., Drepper, B., Hutchinson, L., Michez, D., Molenberg, J.-M., Smagghe, G., Vandamme, P., Vereecken, N.J., Dominance of honey bees is negatively associated with wild bee diversity in commercial apple orchards regardless of management practices. Agric. Ecosyst. Environ., 323, 2022, 107697, 10.1016/j.agee.2021.107697.
Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., Petanidou, T., Potts, S.G., Roberts, S.P.M., Szentgyörgyi, H., Tscheulin, T., Vaissière, B.E., Woyciechowski, M., Biesmeuer, J.C., Kunin, W.E., Settele, J., Steffan-Dewenter, I., Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78 (2008), 653–671, 10.1890/07-1292.1.
Winfree, R., Williams, N.M., Gaines, H., Ascher, J.S., Kremen, C., Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 45 (2008), 793–802, 10.1111/j.1365-2664.2007.01418.x.