[en] Sensing is the process of detecting and monitoring any physico-chemical environmental parameters. Herein, new self-powered iontronic sensors, which utilize touch-induced ionic charge separation in ionically conductive hydrogels, are introduced for potential use in object mapping, recognition, and localization. This is accomplished using high-resolution stereolithography (SLA) 3D printing of stacked ionic assemblies consisting of discrete compartments having different ion transport properties. The latter assemblies readily allow programming the output voltage magnitude and polarity by means of variations in ion type, charge density, and cross-linking density within the iontronic device. Voltages of up to 70 mV are generated on application of compressive strains of as much as 50% (≈22.5 kPa), with the magnitude directly proportional to stress, and the polarity dependent on the sign of the mobile ion. As a proof-of-concept demonstration, the resulting touch sensors are integrated on the fingertip to enable the tactile feedback, mimicking the tactile perception of objects for recognition applications. In addition, it is proposed that streaming potential is the underlying mechanism behind the iontronic touch sensors. The electromechanical response is therein consistent with a streaming potential model.
Disciplines :
Materials science & engineering
Author, co-author :
Odent, Jérémy ✱; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Baleine, Nicolas ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Biard, Valentin; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Mons, Belgium
Dobashi, Yuta; Institute of Medical Science, University of Toronto, Toronto, Canada
Vancaeyzeele, Cédric; The Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, Cergy, France
Nguyen, Giao T. M.; The Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, Cergy, France
Madden, John D. W.; Advanced Materials and Process Engineering Laboratory, Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
Plesse, Cédric; The Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, Cergy, France
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
✱ These authors have contributed equally to this work.
Language :
English
Title :
3D-Printed Stacked Ionic Assemblies for Iontronic Touch Sensors
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
European Regional Development Fund Fédération Wallonie-Bruxelles
Funding text :
We gratefully acknowledge support from the Belgian Federal Government Office of Science Policy (SSTC‐PAI 6/27) as well as both Wallonia and the European Commission “FSE and FEDER”. The authors acknowledge the Interreg France‐Wallonie‐Vlaanderen program, 3D4Med, with the financial support of the European Regional Development Fund (ERDF). J.‐M.R. is a senior research associate at F.R.S.‐F.N.R.S. (Belgium).
a) H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A. A. Stokes, I. Park, M. Sitti, M. Amjadi, Adv. Int. Sys. 2020, 2, 2000039;
b) J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, Lab Chip 2018, 18, 217;
c) M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 2016, 26, 1678.
R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia, A. Yang, S. Li, X. Xiao, Sens. Actuators, A 2021, 321, 112425.
a) J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. of Mat. Chem. C 2019, 7, 11710;
b) Z. Wang, Y. Cong, J. Fu, J. Mater. Chem. B 2020, 8, 3437.
a) A. Rivadeneyra, J. A. López-Villanueva, Micromachines 2020, 11, 367;
b) Y. Ye, C. Zhang, C. He, X. Wang, J. Huang, J. Deng, IEEE Access 2020, 8, 45325.
T. Nguyen, M. Khine, Polymers 2020, 12, 1454.
C. Dagdeviren, P. Joe, O. L. Tuzman, K.-I. Park, K. J. Lee, Y. Shi, Y. Huang, J. A. Rogers, Extreme Mech Lett 2016, 9, 269.
a) X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z. L. Wang, Sci. Adv. 2017, 3, e1700015;
b) B. Jiang, Y. Long, X. Pu, W. Hu, Z. L. Wang, Nano Energy 2021, 86, 106086.
K. K. Kim, S. Hong, H. M. Cho, J. Lee, Y. D. Suh, J. Ham, S. H. Ko, Nano Lett. 2015, 15, 5240.
a) C. Wan, K. Xiao, A. Angelin, M. Antonietti, X. Chen, Adv. Int. Sys. 2019, 1, 1900073;
b) S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. 2017, 29, 1607054;
c) H. Chun, T. D. Chung, Annu. Rev. Anal. Chem. 2015, 8, 441.
a) J.-Y. Sun, C. Keplinger, G. M. Whitesides, Z. Suo, Adv. Mat. 2014, 26, 7608;
b) Z. Lei, P. Wu, Nat. Commun. 2018, 9, 1134;
c) B. Ying, Q. Wu, J. Li, X. Liu, Materials Horizons 2020, 7, 477.
a) C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 2013, 341, 984;
b) T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, B. Liu, Z. Zeng, Z. Huang, Y. Luo, T. Xie, W. Yang, Sci. Adv. 2017, 3, e1602045;
c) M. Duduta, E. Hajiesmaili, H. Zhao, R. J. Wood, D. R. Clarke, Proc. Natl. Acad. Sci. USA 2019, 116, 2476.
a) B. Nie, R. Li, J. D. Brandt, T. Pan, Lab Chip 2014, 14, 1107;
b) B. Nie, R. Li, J. Cao, J. D. Brandt, T. Pan, Adv. Mater. 2015, 27, 6055;
c) S. G. Yoon, S. T. Chang, J. Mater. Chem. C 2017, 5, 1910;
d) Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu, B. Shao, J. Zhang, J. Yang, J. Zhang, Q. Wang, C. F. Guo, Adv. Sci. 2020, 7, 2000348.
C. Yang, Z. Suo, Nat. Rev. Mater. 2018, 3, 125.
C.-C. Kim, H.-H. Lee, K. H. Oh, J.-Y. Sun, Science 2016, 353, 682.
V. Triandafilidi, S. G. Hatzikiriakos, J. Rottler, Soft Matter 2018, 14, 6222.
a) K. Sawahata, J. P. Gong, Y. Osada, Macromol. Rapid Commun. 1995, 16, 713;
b) M. S. Sarwar, Y. Dobashi, E. Glitz, M. Farajollahi, S. Mirabbasi, S. Naficy, G. M. Spinks, J. D. W. Madden, Transparent and conformal ‘piezoionic’ touch sensor, SPIE, Bellingham, WA 2015.
A. Erbas, M. Olvera de la Cruz, ACS Macro Lett. 2015, 4, 857.
a) K. Prudnikova, M. Utz, Macromolecules 2012, 45, 1041;
b) K. Prudnikova, M. Utz, in Frontiers in Sensing: From Biology to Engineering, Springer, New York, 2012.
a) J. Zhao, S. Han, Y. Yang, R. Fu, Y. Ming, C. Lu, H. Liu, H. Gu, W. Chen, ACS Nano 2017, 11, 8590;
b) Y. Dobashi, G. Allegretto, M. S. Sarwar, E. Cretu, J. D. W. Madden, MRS Adv. 2016, 1, 63.
a) V. Woehling, G. T. M. Nguyen, C. Plesse, Y. Petel, Y. Dobashi, J. D. W. Madden, C. A. Michal, F. Vidal, Multifunct. Mater. 2019, 2, 045002;
b) S. M. Villa, V. M. Mazzola, T. Santaniello, E. Locatelli, M. Maturi, L. Migliorini, I. Monaco, C. Lenardi, M. Comes Franchini, P. Milani, ACS Macro Letters 2019, 8, 414;
c) Y. Liu, Y. Hu, J. Zhao, G. Wu, X. Tao, W. Chen, Small 2016, 12, 5074.
a) N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, C. F. Guo, Nat. Commun. 2020, 11, 209;
b) A. Chhetry, J. Kim, H. Yoon, J. Y. Park, ACS Appl. Mater. Interfaces 2019, 11, 3438;
c) Z. He, W. Chen, B. Liang, C. Liu, L. Yang, D. Lu, Z. Mo, H. Zhu, Z. Tang, X. Gui, ACS Appl. Mater. Interfaces 2018, 10, 12816;
d) S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859.
a) A. Fiumefreddo, M. Utz, Macromolecules 2010, 43, 5814;
b) P. G. d. Gennes, K. Okumura, M. Shahinpoor, K. J. Kim, Europhys Lett 2000, 50, 513;
c) E. H. Frank, A. J. Grodzinsky, J. Biomech. 1987, 20, 615.
T. B. H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept, M. Shtein, J. Yang, M. Mayer, Nature 2017, 552, 214.
a) M. R. Khosravani, T. Reinicke, Sens. Actuators, A 2020, 305, 111916;
b) C. Liu, N. Huang, F. Xu, J. Tong, Z. Chen, X. Gui, Y. Fu, C. Lao, Polymers 2018, 10, 629;
c) Y. Xu, X. Wu, X. Guo, B. Kong, M. Zhang, X. Qian, S. Mi, W. Sun, Sensors 2017, 17, 1166.
a) J. Odent, S. Vanderstappen, A. Toncheva, E. Pichon, T. J. Wallin, K. Wang, R. F. Shepherd, P. Dubois, J.-M. Raquez, J. Mater. Chem. A 2019, 7, 15395;
b) C. K. Chua, K. F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications, World Scientific, Singapore, 2015;
c) L. Gibson, D. Rosen, B. Stucker, additive manufacturing technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York, 2015.
S. E. Root, C. W. Carpenter, L. V. Kayser, D. Rodriquez, D. M. Davies, S. Wang, S. T. M. Tan, Y. S. Meng, D. J. Lipomi, ACS Omega 2018, 3, 662.
L. W. Hill, Prog. Org. Coat. 1997, 31, 235.
Y. Dobashi, D. Yao, Y. Petel, T. N. Nguyen, M. S. Sarwar, Y. Thabet, C. L. W. Ng, E. Scabeni Glitz, G. T. M. Nguyen, C. Plesse, F. Vidal, C. A. Michal, J. D. W. Madden, Science 2022, 376, 502.
Y. Marcus, J. Chem. Soc., Faraday Trans. 1991, 87, 2995.
P. G. de Gennes, K. Okumura, M. Shahinpoor, K. J. Kim, Europhys. Lett. 2000, 50, 513.
a) M. L. White, J. Phys. Chem. 1960, 64, 1563;
b) C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge, R. W. Zimmerman, J. Colloid Interface Sci. 2001, 240, 601.
Z. Zhu, L. Chang, T. Horiuchi, K. Takagi, A. Aabloo, K. Asaka, J. Appl. Phys. 2016, 119, 124901.