Synthesis and Characterization of Conjugated Hyaluronic Acids. Application to Stability Studies of Chitosan-Hyaluronic Acid Nanogels Based on Fluorescence Resonance Energy Transfer.
Malytskyi, Volodymyr; {"lastName":"Moreau", "firstNames":"Juliette","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:7401591539""OR:0000-0003-0142-8765"]}; {"lastName":"Callewaert", "firstNames":"Maité","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:8891955300""OR:0000-0002-1027-8087"]}et al.
fluorinated and fluorescent HA conjugates–hyaluronic acid degree of substitution–diffusion ordered spectroscopy (DOSY)–1D diffusion-filtered 19F NMR–atomic force microscopy–FRET experiments–hyaluronidase–nanohydrogel stability; nanohydrogels–hyaluronic acid–HA-mPEG2000; 1D diffusion-filtered19F NMR; atomic force microscopy; diffusion ordered spectroscopy (DOSY); FRET experiments; HA-mPEG2000; fluorinated and fluorescent HA conjugates; hyaluronic acid; hyaluronic acid degree of substitution; hyaluronidase; nanohydrogel stability; nanohydrogels; Bioengineering; Biomaterials; Organic Chemistry; Polymers and Plastics
Abstract :
[en] Hyaluronic acid (HA) was functionalized with a series of amino synthons (octylamine, polyethylene glycol amine, trifluoropropyl amine, rhodamine). Sodium hyaluronate (HAs) was first converted into its protonated form (HAp) and the reaction was conducted in DMSO by varying the initial ratio (-NH2 (synthon)/COOH (HAp)). HA derivatives were characterized by a combination of techniques (FTIR, 1H NMR, 1D diffusion-filtered 19F NMR, DOSY experiments), and degrees of substitution (DSHA) varying from 0.3% to 47% were determined, according to the grafted synthon. Nanohydrogels were then obtained by ionic gelation between functionalized hyaluronic acids and chitosan (CS) and tripolyphosphate (TPP) as a cross-linker. Nanohydrogels for which HA and CS were respectively labeled by rhodamine and fluorescein which are a fluorescent donor-acceptor pair were subjected to FRET experiments to evaluate the stability of these nano-assemblies.
Research center :
CMMI - Centre de Recherche en Microscopie et Imagerie Médicale
Disciplines :
Chemistry
Author, co-author :
Malytskyi, Volodymyr; Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France ; Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, IPCM UMR 8232, 4 Place Jussieu, 75252 Paris, France
{"lastName":"Moreau", "firstNames":"Juliette","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:7401591539""OR:0000-0003-0142-8765"]}
{"lastName":"Callewaert", "firstNames":"Maité","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:8891955300""OR:0000-0002-1027-8087"]}
{"lastName":"Cadiou", "firstNames":"Cyril","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:6602869810""OR:0000-0002-2737-9976"]}
Feuillie, Cécile; Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
{"lastName":"Molinari", "firstNames":"Michael","affiliations":["Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium"],"ids":["SC:14619563600""OR:0000-0001-9906-655X"]}
{"lastName":"Chuburu", "firstNames":"Françoise","affiliations":["Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France"],"ids":["SC:6602277866""OR:0000-0002-4937-173X"]}
Language :
English
Title :
Synthesis and Characterization of Conjugated Hyaluronic Acids. Application to Stability Studies of Chitosan-Hyaluronic Acid Nanogels Based on Fluorescence Resonance Energy Transfer.
R100 - Institut des Biosciences R550 - Institut des Sciences et Technologies de la Santé
Funders :
Programme de cooperation transfrontalière Interreg France-Wallonie-Vlaanderen
Funding text :
Funding: The work was funded by the “Programme de cooperation transfrontalière Interreg France-Wallonie-Vlaanderen” (Nanocardio project (http://nanocardio.eu, accessed on 3 December 2021).Acknowledgments: V. Malytskyi is grateful to the “Programme de cooperation transfrontalière In-terreg France-Wallonie-Vlaanderen” for funding his post-doctoral fellowship. The Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and the Region Wallone), the Bioprofiling platform (supported by the European Regional Development Fund and the Walloon Region, Belgium) and the PlAneT and the NanoMat’ platforms (supported by the European Regional Development Fund, the Region Grand Est, and the DRRT Grand Est) are thanked for their support. Antony Robert, Amandine Destrebecq, and Christelle Kowandy are thanked for their help in 1H NMR spectra recording, ICP OES and SEC measurements respectively.
Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701.
Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliver. Rev. 2016, 97, 204–236.
Gallo, N.; Nasser, H.; Salvatore, L.; Natali, M.L.; Campa, L.; Mahmoud, M.; Capobianco, L.; Sannino, A.; Madaghiel, M. Hyaluronic acid for advanced therapies: Promises and challenges. Eur. Polym. J. 2019, 117, 134–147.
Khan, W.; Abtew, E.; Modani, S.; Domb, A.J. Polysaccharide based nanoparticles. Isr. J. Chem. 2018, 58, 1315–1329.
Li, M.; Sun, J.; Zhang, W.; Zhao, Y.; Shufen, Z.; Zhang, Z. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym. 2021, 251, 117103.
Wolf, K.J.; Kumar, S. Hyaluronic Acid: Incorporating the Bio into the Material. ACS Biomater. Sci. Eng. 2019, 5, 3753−3765.
Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029.
Kirschning, A.; Dibbert, N.; Drager, G. Chemical functionalization of polysaccharides—towards biocompatible hydrogels for biomedical applications. Chem. Eur. J. 2018, 24, 1231–1240.
Rho, J.G.; Han, H.S.; Han, J.H.; Lee, H.; Nguyen, V.Q.; Lee, W.H.; Kim, W. Self-assembled hyaluronic acid nanoparticles: Implications as a nanomedicine for treatment of type 2 diabetes. J. Control. Release 2018, 279, 89–98.
Kim, K.; Choi, H.; Choi, E.S.; Park, M.-H.; Ryu, J.-H. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics 2019, 11, 301.
Prajapati, V.D.; Maheriya, P.M. Hyaluronic acid as potential carrier in biomedical and drug delivery applications. In Functional Polysaccharides for Biomedical Applications, Maiti, S., Jana, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–265.
Kaewruethai, T.; Laomeephol, C.; Pan, Y.; Luckanagul, J.A. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021, 7, 228.
Yuan, J.; Maturavongsadit, P.; Zhou, Z.; Lv, B.; Lin, Y.; Yang, J.; Luckanagul, J. Hyaluronic acid-based hydrogels with tobacco mosaic virus containing cell adhesive peptide induce bone repair in normal and osteoporotic rats. Biomater Transl. 2020, 1, 89– 98.
Jia, X.; Han, Y.; Pei, M.; Zhao, X.; Tian, K.; Zhou, T.; Liu, P. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr. Polym. 2016, 152, 391–397.
Silva Garcia, J.M.; Panitch, A.; Calve, S. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior. Acta Biomater. 2019, 84, 169–179.
Du, X.; Yin, S.; Wang, Y.; Gu, X.; Wang, G.; Li, J. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr. Polym. 2018, 202, 513–522.
Crescenzi, V.; Francescangeli, A.; Capitani, D.; Mannina, L.; Renier, D.; Bellini, D. Hyaluronan networking via Ugi’s condensation using lysine as cross-linker diamine. Carbohydr. Polym. 2003, 53, 311–316.
Ramachandran, B.; Chakraborty, S.; Kannan, R.; Dixit, M.; Muthuvijayan, V. Immobilization of hyaluronic acid from Lactococcus lactis on polyethylene terephthalate for improved biocompatibility and drug release. Carbohydr. Polym. 2019, 206, 132–140.
Vasi, A.-M.; Popa, M.I.; Butnaru, M.; Dodi, G.; Verestiuc, L. Chemical functionalization of hyaluronic acid for drug delivery applications. Mater. Sci. Eng. C 2014, 38, 177–185
Wei, K.; Zhu, M.; Sun, Y.; Xu, J.; Feng, Q.; Lin, S.; Wu, T.; Xu, J.; Tian, F.; Xia, J.; et al. Robust Biopolymeric Supramolecular “Host−Guest Macromer” Hydrogels Reinforced by in Situ Formed Multivalent Nanoclusters for Cartilage Regeneration. Macromolecules 2016, 49, 866–875.
Kaczmarek, B.; Sionkowska, A.; Kozlowska, J.; Osyczka, A.M. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. Int. J. Biol. Macromol. 2018, 107, 247–253.
Song, H.-Q.; Fan, Y.; Hu, Y.; Cheng, G.; Xu, F.-J. Polysaccharide–Peptide Conjugates: A Versatile Material Platform for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2005978
Nakajima, N.; Ikada, Y. Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjugate Chem. 1995, 6, 123–130
D’Este, M.; Eglin, D.; Alini, M. A systematic analysis of DMTMM vs. EDC/NHS for ligation of amines to hyaluronan in water. Carbohydr. Polym. 2014, 108, 239–246.
Palumbo, F.S.; Fiorica, C.; Di Stefano, M.; Pitarresi, G.; Gulino, A.; Agnello, S.; Giammona, G. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydr. Polym. 2015, 122, 408–416.
Almeida, P.V.; Shahbazi, M.-A.; Mäkilä, E.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H.A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 2014, 6, 10377–10387.
Schneider, A.; Picart, C.; Senger, B.; Schaaf, P.; Voegel, J.; Frisch, B. Layer-by-Layer Films from Hyaluronan and Amine-Modified Hyaluronan. Langmuir 2007, 23, 2655–2662.
Courant, T.; Roullin, V.G.; Cadiou, C.; Callewaert, M.; Andry, M.C.; Portefaix, C.; Hoeffel, C.; de Goltstein, M.C.; Port, M.; Laurent, S.; et al. Hydrogels Incorporating GdDOTA: Towards Highly Efficient Dual T1/T2 MRI Contrast Agents. Angew. Chem. Int. Ed. 2012, 51, 9119–9122.
Callewaert, M.; Roullin, V.G.; Cadiou, C.; Millart, E.; Van Gulik, L.; Andry, M.C.; Portefaix, C.; Hoeffel, C.; Laurent, L.; Vander Elst, L.; et al. Tuning the composition of biocompatible Gd nanohydrogels to achieve hypersensitive dual T1/T2 MRI contrast agents. J. Mater. Chem. B 2014, 2, 6397–6405.
Malytskyi, V.; Moreau, J.; Callewaert, M.; Rigaux, G.; Cadiou, C.; Laurent, S.; Chuburu, F. Organic nanoparticles and gadolinium chelates. In Materials for Biomedical Engineering: Organic Micro and Nanostructures, 1st ed.; Grumezescu, A.; Holban, A.-M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–476.
Moreau, J.; Callewaert, M.; Malytskyi, V.; Henoumont, C.; Voicu, S.N.; Stan, M.S.; Molinari, M.; Cadiou, C.; Laurent, S.; Chuburu, F. Fluorescent chitosan-based nanohydrogels and encapsulation of gadolinium MRI contrast agent for magneto-optical imaging, Carbohydr. Polym. Technol. Appl. 2021, 2, 100104
Chib, R.; Raut, S.; Fudala, R.; Chang, A.; Mummert, M.; Rich, R.; Gryczynski, Z.; Gryczynski, I. FRET Based-Metric Sensing of Hyaluronidase in Synthetic Urine as a Biomarker for Bladder and Prostate Cancer. Curr. Pharm. Biotechnol. 2013, 14, 470–474.
Fudala, R.; Mummert, M.E.; Gryczynski, Z.; Gryczynski, I. Fluorescence detection of hyaluronidase. J. Photochem. Photobiol. B 2011, 104, 473–477.
Belabassi, Y.; Moreau, J.; Gheran, V.; Henoumont, C.; Robert, A.; Callewaert, M.; Rigaux, G.; Cadiou, C.; Vander Elst, L.; Laurent, S.; et al. Synthesis and characterization of PEGylated and fluorinated chitosans: application to the synthesis of targeted nanoparticles for drug delivery. Biomacromolecules 2017, 18, 2756−2766.
Eslami, P.; Rossi, F.; Fedeli, S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019, 11, 71.
Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154.
Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S.W.A.; de Matas, M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 2019, 9, 721–734
Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728.
Misselwitz, B. MR contrast agents in lymph node imaging. Eur. J. Radiol. 2006, 35, 375–382.
Kačenka, M.; Kaman, O.; Kikerlová, S.; Pavlů, B.; Jirák, Z.; Jirák, D.; Herynek, V.; Černý, J.; Chaput, F.; Laurent, S.; et al. Fluorescent magnetic nanoparticles for cell labeling: Flux synthesis of manganite particles and novel functionalization of silica shell. J. Colloid Interface Sci. 2015, 447, 97–106.
Oyarzun-Ampuero, F.A.; Brea, J.; Loza, M.I.; Torres, D.; Alonso, M.J. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int. J. Pharm. 2009, 381, 122–129.
Rigaux, G.; Gheran, C.V.; Callewaert, M.; Cadiou, C.; Voicu, S.N.; Dinischiotu, A.; Andry, M.C.; Vander Elst, L.; Laurent, S.; Muller, R.N.; et al. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). Nanotechnology 2017, 28, 055705.
Stern, R.; Jedrzejas, M.J. Hyaluronidases: their genomic, structures and mechanisms of action. Chem. Rev. 2006, 106, 818–839.
Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev. 2013, 65, 1234–1270.
Hirai, A.; Odani, H.; Nakajima, A. Determination of degree of deacetylation of chitosan by1H NMR spectroscopy. Polym. Bull. 1991, 26, 87–94.
Vårum, K.M.; Antohonsen, M.W.; Grasdalen, H.; Smidsrød, O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field N.M.R. spectroscopy. Carbohydr. Res. 1991, 211, 17–23.
Palumbo, F.S.; Pitarresi, G.; Mandracchia, D.; Tripodo, G.; Giammona, G. New graft copolymers of hyaluronic acid and polylactic acid: Synthesis and characterization. Carbohydr. Polym. 2006, 66, 379–385.
Cho, H.-J.; Yoon, H.Y.; Koo, H.; Ko, S.-H.; Shim, J.-S.; Cho, J.-H.; Park, J.H.; Kim, K.; Kwon, I.C.; Kim, D.-D. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J. Control. Release 2012, 162, 111–118.
Johnson, C.S., Jr. Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203–256.
Augé, S.; Amblard-Blondel, B.; Delsuc, M.A. Investigation of the diffusion measurement using PFG and tTest r against experimental conditions and parameters. J. Chim. Phys. Phys.-Chim. Biol. 1999, 96, 1559–1565.