Emission characteristics; Far field measurement; Luminescence quantum yields; Optical simulation; Perovskite thin films; Photovoltaic applications; Solar cell devices; Solar-cell applications; Atomic and Molecular Physics, and Optics; Computer Networks and Communications
Abstract :
[en] Perovskites are a class of recently established materials that triggered enormous interest particularly for solar cell applications. Recent studies have pointed out the extraordinary luminescence quantum yield in perovskite materials. The concept of photon recycling investigated in this work promises a route to reharvest the radiatively emitted photons and, thus, lead to an increase in the open-circuit voltage in perovskite solar cells. In this light, this work investigates the role of nanostructured perovskite absorber layers. While the change of the open-circuit voltage due to photon recycling is understood at a conceptional level, the actual impact of a nanostructured interface on the photon recycling has not yet been studied quantitatively. Here, we rely on full-wave optical simulations to quantify the impact of photon recycling on the open-circuit voltage in a nanotextured biperiodic perovskite thin-film layer and additionally with the perovskite layer integrated into a complete solar cell multilayer stack. The validity of the optical simulations is confirmed by far-field measurements of the emission characteristics from fabricated devices. We find that the considered nanostructure provides around 2% increase to a typically achievable open-circuit voltage in perovskite solar cells. We thereby show that, while the main focus for the design of nanostructures is the optimization of light harvesting, photon recycling might be of interest in future designs of solar cell devices.
Disciplines :
Physics
Author, co-author :
Nanz, Stefan; Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Schmager, Raphael; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Abebe, Muluneh Geremew ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Micro et Nanophotoniques
Willig, Christian; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Wickberg, Andreas ; Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Abass, Aimi; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Gomard, Guillaume ; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany ; Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
Wegener, Martin; Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Paetzold, Ulrich W. ; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany ; Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
Rockstuhl, Carsten; Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany ; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Language :
English
Title :
Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft
Funding text :
We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) through Program DFG-SPP 1839 “Tailored Disorder” (RO 3640/6-2, Project-ID 278744673), the Excellence Cluster “3D Matter Made to Order” (3DMM2O) (EXC-2082, Project-ID: 390761711), and the Karlsruhe School of Optics and Photonics (KSOP). We also acknowledge the company JCMwave for kindly providing the software used for the simulations. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology. Furthermore, we thank Jonas Schwenzer for helping with the preparation of the samples. G.G. also acknowledges support from the Helmholtz Postdoc Program. U.W.P. acknowledges financial support of the Bundesministerium für Bildung und Forschung (PRINTPERO) and the Initiating and Networking funding of the Helmholtz Association [HYIG of Dr. U.W. Paetzold; the Helmholtz Energy Materials Foundry (HEMF); and PEROSEED].
F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U. W. Paetzold, U. Rau, T. Unold, and T. Kirchartz, Phys. Rev. Appl. 6, 044017 (2016). 10.1103/physrevapplied.6.044017
M. H. Futscher and B. Ehrler, ACS Energy Lett. 1, 863 (2016). 10.1021/acsenergylett.6b00405
W. Tress, Adv. Energy Mater. 7, 1602358 (2017). 10.1002/aenm.201602358
Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J. A. Marquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold, and T. Kirchartz, ACS Energy Lett. 4, 110 (2019). 10.1021/acsenergylett.8b01906
M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8, 506 (2014). 10.1038/nphoton.2014.134
P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, Appl. Phys. Lett. 109, 141106 (2016). 10.1063/1.4963893
P. Brenner, T. Glöckler, D. Rueda-Delgado, T. Abzieher, M. Jakoby, B. S. Richards, U. W. Paetzold, I. A. Howard, and U. Lemmer, Opt. Mater. Express 7, 4082 (2017). 10.1364/ome.7.004082
J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, and A. Hagfeldt, Science 358, 739 (2017). 10.1126/science.aam6323
S. V. Makarov, V. Milichko, E. V. Ushakova, M. Omelyanovich, A. C. Pasaran, R. Haroldson, B. Balachandran, H. Wang, W. Hu, Y. S. Kivshar, and A. A. Zakhidov, ACS Photonics 4, 728 (2017). 10.1021/acsphotonics.6b00940
X. Zhang, J.-X. Shen, W. Wang, and C. G. V. de Walle, ACS Energy Lett. 3, 2329 (2018). 10.1021/acsenergylett.8b01297
J. E. Parrott, Sol. Energy Mater. Sol. Cells 30, 221 (1993). 10.1016/0927-0248(93)90142-p
V. Badescu and P. T. Landsberg, Semicond. Sci. Technol. 12, 1491 (1997). 10.1088/0268-1242/12/11/028
L. M. Pazos-Outon, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrucinic, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, Science 351, 1430 (2016). 10.1126/science.aaf1168
Z. Gan, W. Chen, L. Yuan, G. Cao, C. Zhou, S. Huang, X. Wen, and B. Jia, Appl. Phys. Lett. 114, 011906 (2019). 10.1063/1.5081805
T. Kirchartz, F. Staub, and U. Rau, ACS Energy Lett. 1, 731 (2016). 10.1021/acsenergylett.6b00223
T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, Phys. Rev. Appl. 7, 014001 (2017). 10.1103/physrevapplied.7.014001
W. E. I. Sha, X. Ren, L. Chen, and W. C. H. Choy, Appl. Phys. Lett. 106, 221104 (2015). 10.1063/1.4922150
J. M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J. P. Rivett, L. M. Pazos-Outón, K. C. Gödel, M. Price, F. Deschler, and R. H. Friend, Nat. Commun. 7, 13941 (2016). 10.1038/ncomms13941
T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, Opt. Express 27, A1 (2019). 10.1364/oe.27.0000a1
M. G. Abebe, A. Abass, G. Gomard, L. Zschiedrich, U. Lemmer, B. S. Richards, C. Rockstuhl, and U. W. Paetzold, Phys. Rev. B 98, 075141 (2018). 10.1103/physrevb.98.075141
C. H. Swartz, S. Paul, L. M. Mansfield, and M. W. Holtz, J. Appl. Phys. 125, 053103 (2019). 10.1063/1.5064798
T. K. Nguyen, P. T. Dang, and K. Q. Le, J. Opt. 18, 125901 (2016). 10.1088/2040-8978/18/12/125901
Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, and Y. Song, Adv. Energy Mater. 8, 1702960 (2018). 10.1002/aenm.201702960
R. Schmager, G. Gomard, B. S. Richards, and U. W. Paetzold, Sol. Energy Mater. Sol. Cells 192, 65 (2019). 10.1016/j.solmat.2018.12.012
H. Wang, S.-C. Liu, B. Balachandran, J. Moon, R. Haroldson, Z. Li, A. Ishteev, Q. Gu, W. Zhou, A. Zakhidov, and W. Hu, Opt. Express 25, A1162 (2017). 10.1364/oe.25.0a1162
I. M. Hossain, D. Hudry, F. Mathies, T. Abzieher, S. Moghadamzadeh, D. Rueda-Delgado, F. Schackmar, M. Bruns, R. Andriessen, T. Aernout, F. D. Giacomo, U. Lemmer, B. S. Richards, U. W. Paetzold, and A. Hadipour, ACS Appl. Energy Mater. 2, 47 (2019). 10.1021/acsaem.8b01567
M. van Eerden, M. Jaysankar, A. Hadipour, T. Merckx, J. J. Schermer, T. Aernouts, J. Poortmans, and U. W. Paetzold, Adv. Opt. Mater. 5, 1700151 (2017). 10.1002/adom.201700151
N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H.-C. Scheer, and T. Riedl, Adv. Mater. 29, 1605003 (2017). 10.1002/adma.201605003
H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal, J. Y. Chan, A. Zakhidov, and W. Hu, ACS Nano 10, 10921 (2016). 10.1021/acsnano.6b05535
A. Mayer, M. Buchmüller, S. Wang, C. Steinberg, M. Papenheim, H.-C. Scheer, N. Pourdavoud, T. Haeger, and T. Riedl, J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 35, 06G803 (2017). 10.1116/1.4991619
J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, Phys. Status Solidi B 244, 3419 (2007). 10.1002/pssb.200743192
J.-P. Berenger, J. Comput. Phys. 114, 185 (1994). 10.1006/jcph.1994.1159
S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys. B: At., Mol. Opt. Phys. 29, 3763 (1996). 10.1088/0953-4075/29/16/019
C. T. Tai and R. E. Collin, IEEE Trans. Antennas Propag. 48, 1501 (2000). 10.1109/8.899665
M. A. Green, Prog. Photovoltaics 10, 235 (2002). 10.1002/pip.404
L. Zschiedrich, H. J. Greiner, S. Burger, and F. Schmidt, Proc. SPIE 8641, 86410B (2013). 10.1117/12.2001132
U. Rau, U. W. Paetzold, and T. Kirchartz, Phys. Rev. B 90, 035211 (2014). 10.1103/physrevb.90.035211
S. Jain, V. Depauw, V. D. Miljkovic, A. Dmitriev, C. Trompoukis, I. Gordon, P. V. Dorpe, and O. E. Daif, Prog. Photovoltaics 23, 1144 (2015). 10.1002/pip.2533
ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, American Society for Testing and Materials, West Conshohocken, PA, 2012, available from https://www.astm.org.
W. Kim, M. S. Jung, S. Lee, Y. J. Choi, J. K. Kim, S. U. Chai, W. Kim, D.-G. Choi, J. H. C. H. Ahn, D. Choi, H. Shin, D. Kim, and J. H. Park, Adv. Energy Mater. 8, 1702369 (2018). 10.1002/aenm.201702369