electronic nose; fish freshness; metal oxides; nondestructive detection; semiconductor gas sensors; Condition; Gas-sensors; Metal oxide semiconductor; Metal-oxide; Qualitative evaluations; Quantitative evaluation; Resistive gas sensors; Food Science
Abstract :
[en] Fish are prone to spoilage and deterioration during processing, storage, or transportation. Therefore, there is a need for rapid and efficient techniques to detect and evaluate fish freshness during different periods or conditions. Gas sensors are increasingly important in the qualitative and quantitative evaluation of high-protein foods, including fish. Among them, metal-oxide-semiconductor resistive (MOSR) sensors with advantages such as low cost, small size, easy integration, and high sensitivity have been extensively studied in the past few years, which gradually show promising practical application prospects. Herein, we take the detection, classification, and assessment of fish freshness as the actual demand, and summarize the physical and chemical changes of fish during the spoilage process, the volatile marker gases released, and their production mechanisms. Then, we introduce the advantages, performance parameters, and working principles of gas sensors, and summarize the MOSR gas sensors aimed at detecting different kinds of volatile marker gases of fish spoiling in the last 5 years. After that, this paper reviews the research and application progress of MOSR gas sensor arrays and electronic nose technology for various odor indicators and fish freshness detection. Finally, this review points out the multifaceted challenges (sampling system, sensing module, and pattern recognition technology) faced by the rapid detection technology of fish freshness based on metal oxide gas sensors, and the potential solutions and development directions are proposed from the view of multidisciplinary intersection.
Research center :
CRIM - Ingénierie des matériaux
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Wu, Kaidi ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux ; College of Mechanical Engineering, Yangzhou University, Yangzhou, China
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Outstanding Youth Foundation of Jiangsu Province of China National Natural Science Foundation of China National Key Research and Development Program of China
Funding text :
This work was financially supported by the National Natural Science Foundation of China (Grant no. 51872254), the Outstanding Youth of Jiangsu Province of China (Grant no. BK20211548), the National Key Research and Development Program of China (Grant no. 2017YFE0115900), and the Excellent Doctoral Dissertation Fund of Yangzhou University (2021_06).
Andre, R. S., Facure, M. H. M., Mercante, L. A., & Correa, D. S. (2022). Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sensors and Actuators B: Chemical, 353, 131114. https://doi.org/10.1016/j.snb.2021.131114
Bai, S., Han, J., Han, N., Zhang, K., Sun, J., Sun, L., Luo, R., Li, D., & Chen, A. (2020). An α-Fe2O3/NiO p-n hierarchical heterojunction for the sensitive detection of triethylamine. Inorganic Chemistry Frontiers, 7(7), 1532–1539. https://doi.org/10.1039/C9QI01548E
Bernardo, Y. A. A., Rosario, D. K. A., Delgado, I. F., & Conte-Junior, C. A. (2020). Fish Quality Index Method: Principles, weaknesses, validation, and alternatives - A review. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2657–2676. https://doi.org/10.1111/1541-4337.12600
Bruce, J., Bosnick, K., & Kamali Heidari, E. (2022). Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage. Sensors and Actuators B: Chemical, 355, 131316. https://doi.org/10.1016/j.snb.2021.131316
Chang, L.-Y., Chuang, M.-Y., Zan, H.-W., Meng, H.-F., Lu, C.-J., Yeh, P.-H., & Chen, J.-N. (2017). One-minute fish freshness evaluation by testing the volatile amine gas with an ultrasensitive porous-electrode-capped organic gas sensor system. ACS Sensors, 2(4), 531–539. https://doi.org/10.1021/acssensors.6b00829
Chen, G., Chu, X., Qiao, H., Ye, M., Chen, J., Gao, C., & Guo, C.-Y. (2018). Thickness controllable single-crystal WO3 nanosheets: Highly selective sensor for triethylamine detection at room temperature. Materials Letters, 226, 59–62. https://doi.org/10.1016/j.matlet.2018.05.022
Chen, Y., Li, Y., Feng, B., Wu, Y., Zhu, Y., & Wei, J. (2022). Self-templated synthesis of mesoporous Au-ZnO nanospheres for seafood freshness detection. Sensors and Actuators B: Chemical, 360, 131662. https://doi.org/10.1016/j.snb.2022.131662
Cheng, J.-H., Dai, Q., Sun, D.-W., Zeng, X.-A., Liu, D., & Pu, H.-B. (2013). Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in Food Science & Technology, 34(1), 18–31. https://doi.org/10.1016/j.tifs.2013.08.005
Cheng, J.-H., Sun, D.-W., Han, Z., & Zeng, X.-A. (2014). Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Comprehensive Reviews in Food Science and Food Safety, 13(1), 52–61. https://doi.org/10.1111/1541-4337.12043
Cheng, J.-H., Sun, D.-W., Zeng, X.-A., & Liu, D. (2015). Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Critical Reviews in Food Science and Nutrition, 55(7), 1012–1225. https://doi.org/10.1080/10408398.2013.769934
Cho, Y. H., Kang, Y. C., & Lee, J.-H. (2013). Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis. Sensors and Actuators B: Chemical, 176, 971–977. https://doi.org/10.1016/j.snb.2012.10.044
Chou, T.-C., Chang, C.-H., Lee, C., & Liu, W.-C. (2019). Ammonia sensing characteristics of a tungsten trioxide thin-film-based sensor. IEEE Transactions on Electron Devices, 66(1), 696–701. https://doi.org/10.1109/TED.2018.2882737
Chu, X., Wang, J., Gao, Q., Wang, Y., Liang, S., & Bai, L. (2020). High selectivity trimethylamine sensors based on graphene-NiGa2O4 nanocomposites prepared by hydrothermal method. Physica E: Low-dimensional Systems and Nanostructures, 118, 113788. https://doi.org/10.1016/j.physe.2019.113788
Duflos, G., Coin, V. M., Cornu, M., Antinelli, J.-F., & Malle, P. (2006). Determination of volatile compounds to characterize fish spoilage using headspace/mass spectrometry and solid-phase microextraction/gas chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 86(4), 600–611. https://doi.org/10.1002/jsfa.2386
El Barbri, N., Amari, A., Vinaixa, M., Bouchikhi, B., Correig, X., & Llobet, E. (2007). Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage. Sensors and Actuators B: Chemical, 128(1), 235–244. https://doi.org/10.1016/j.snb.2007.06.007
Fan, Y., Xu, Y., Wang, Y., & Sun, Y. (2021). Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit. Journal of Alloys and Compounds, 876, 160170. https://doi.org/10.1016/j.jallcom.2021.160170
Feng, B., Wu, Y., Chen, Y., Yuan, K., Yue, Q., Deng, Y., & Wei, J. (2022). Polyphenol-mediated synthesis of mesoporous Au–In2O3 nanospheres for room-temperature detection of triethylamine. ACS Applied Nano Materials, 5(7), 9688–9697. https://doi.org/10.1021/acsanm.2c01927
Feng, B., Wu, Y., Ren, Y., Chen, Y., Yuan, K., Deng, Y., & Wei, J. (2022). Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sensors and Actuators B: Chemical, 356, 131358. https://doi.org/10.1016/j.snb.2021.131358
Galstyan, V., Bhandari, M., Sberveglieri, V., Sberveglieri, G., & Comini, E. (2018). Metal oxide nanostructures in food applications: Quality control and packaging. Chemosensors, 6(2), 16. https://doi.org/10.3390/chemosensors6020016
Galstyan, V., Ponzoni, A., Kholmanov, I., Natile, M. M., Comini, E., & Sberveglieri, G. (2020). Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sensors and Actuators B: Chemical, 303, 127217. https://doi.org/10.1016/j.snb.2019.127217
Ganesan, S., Muruganandham, A., Mounasamy, V., Kannan, V. P., & Madanagurusamy, S. (2020). Highly selective dimethylamine sensing performance of TiO2 thin films at room temperature. Journal of Nanoscience and Nanotechnology, 20(5), 3131–3139. https://doi.org/10.1166/jnn.2020.17199
Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques: Review. American Journal of Applied Sciences, 7(7), 859–877. https://doi.org/10.3844/ajassp.2010.859.877
Grassi, B., Opizzio, N., & Buratti, S. (2019). Meat and fish freshness assessment by a portable and simplified electronic nose system (Mastersense). Sensors, 19(14), 3225. https://doi.org/10.3390/s19143225
Grassi, S., Benedetti, S., Magnani, L., Pianezzola, A., & Buratti, S. (2022). Seafood freshness: E-nose data for classification purposes. Food Control, 138, 108994. https://doi.org/10.1016/j.foodcont.2022.108994
Gu, F., Cui, Y., Han, D., Hong, S., Flytzani-Stephanopoulos, M., & Wang, Z. (2019). Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Applied Catalysis B: Environmental, 256, 117809. https://doi.org/10.1016/j.apcatb.2019.117809
Gu, Q., Fu, L., Wang, Y., & Lin, J. (2013). Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea during 4°C storage. Journal of Agricultural and Food Chemistry, 61(47), 11645–11652. https://doi.org/10.1021/jf403918x
Güney, S., & Atasoy, A. (2015). Study of fish species discrimination via electronic nose. Computers and Electronics in Agriculture, 119, 83–91. https://doi.org/10.1016/j.compag.2015.10.005
Hammond, J., Marquis, B., Michaels, R., Oickle, B., Segee, B., Vetelino, J., Bushway, A., Camire, M. E., & Davis-Dentici, K. (2002). A semiconducting metal-oxide array for monitoring fish freshness. Sensors and Actuators B: Chemical, 84(2), 113–122. https://doi.org/10.1016/S0925-4005(02)00011-4
Han, F., Huang, X., Teye, E., Gu, H., Dai, H., & Yao, L. (2014). A nondestructive method for fish freshness determination with electronic tongue combined with linear and non-linear multivariate algorithms. Czech Journal of Food Sciences, 32(6), 532–537. https://doi.org/10.17221/88/2014-CJFS
Hassoun, A., & Karoui, R. (2017). Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Critical Reviews in Food Science and Nutrition, 57(9), 1976–1998. https://doi.org/10.1080/10408398.2015.1047926
Heising, J. K., van Boekel, M. A. J. S., & Dekker, M. (2014). Mathematical models for the trimethylamine (TMA) formation on packed cod fish fillets at different temperatures. Food Research International, 56, 272–278. https://doi.org/10.1016/j.foodres.2014.01.011
Hu, C., Yu, L., Li, S., Yin, M., Du, H., & Li, H. (2022). Sacrificial template triggered to synthesize hollow nanosheet-assembled Co3O4 microtubes for fast triethylamine detection. Sensors and Actuators B: Chemical, 355, 131246. https://doi.org/10.1016/j.snb.2021.131246
Hu, Q., He, J., Chang, J., Gao, J., Huang, J., & Feng, L. (2020). Needle-shaped WO3 nanorods for triethylamine gas sensing. ACS Applied Nano Materials, 3(9), 9046–9054. https://doi.org/10.1021/acsanm.0c01731
Hu, X., Zhu, Z., Chen, C., Wen, T., Zhao, X., & Xie, L. (2017). Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sensors and Actuators B: Chemical, 253, 809–817. https://doi.org/10.1016/j.snb.2017.06.183
Huan, Y., Wu, K., Li, C., Liao, H., Debliquy, M., & Zhang, C. (2020). Micro-nano structured functional coatings deposited by liquid plasma spraying. Journal of Advanced Ceramics, 9(5), 517–534. https://doi.org/10.1007/s40145-020-0402-9
Huang, Y.-Z., Liu, Y., Jin, Z., Cheng, Q., Qian, M., Zhu, B.-W., & Dong, X.-P. (2021). Sensory evaluation of fresh/frozen mackerel products: A review. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3504–3530. https://doi.org/10.1111/1541-4337.12776
Haouet, M. N. (2001). Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Speciale Prodotti Ittici. https://www.spvet.it/arretrati/numero_8_9/ittici.html#2. Accessed 9 October 2022.
Jia, W., Liang, G., Jiang, Z., & Wang, J. (2019). Advances in electronic nose development for application to agricultural products. Food Analytical Methods, 12(10), 2226–2240. https://doi.org/10.1007/s12161-019-01552-1
Jia, W., Liang, G., Wang, Y., & Wang, J. (2018). Electronic noses as a powerful tool for assessing meat quality: A mini review. Food Analytical Methods, 11(10), 2916–2924. https://doi.org/10.1007/s12161-018-1283-1
Jiang, S., & Liu, Y. (2020). Gas sensors for volatile compounds analysis in muscle foods: A review. TrAC Trends in Analytical Chemistry, 126, 115877. https://doi.org/10.1016/j.trac.2020.115877
Johnson, J., Atkin, D., Lee, K., Sell, M., & Chandra, S. (2019). Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Science, 150, 40–46. https://doi.org/10.1016/j.meatsci.2018.12.002
Ju, D.-X., Xu, H.-Y., Qiu, Z.-W., Zhang, Z.-C., Xu, Q., & Zhang, J. (2015). Near room temperature, fast-response, and highly sensitive triethylamine sensor assembled with Au-loaded ZnO/SnO2 core–shell nanorods on flat alumina substrates. ACS Applied Materials & Interfaces, 7(34), 19163–19171. https://doi.org/10.1021/acsami.5b04904
Kademi, H. I., Ulusoy, B. H., & Hecer, C. (2019). Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Reviews International, 35(3), 201–220. https://doi.org/10.1080/87559129.2018.1514624
Karunathilaka, S. R., Ellsworth, Z., & Yakes, B. J. (2021). Detection of decomposition in mahi-mahi, croaker, red snapper, and weakfish using an electronic-nose sensor and chemometric modeling. Journal of Food Science, 86(9), 4148–4158. https://doi.org/10.1111/1750-3841.15878
Katiyo, W., de Kock, H. L., Coorey, R., & Buys, E. M. (2020). Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT - Food Science and Technology, 128, 109468. https://doi.org/10.1016/j.lwt.2020.109468
Kent, M., Oehlenschlager, J., Mierke-Klemeyer, S., Manthey-Karl, M., Knöchel, R., Daschner, F., & Schimmer, O. (2004). A new multivariate approach to the problem of fish quality estimation. Food Chemistry, 87(4), 531–535. https://doi.org/10.1016/j.foodchem.2004.01.004
Kim, J.-S., Kim, K. B., Li, H.-Y., Na, C. W., Lim, K., Moon, Y. K., Yoona, J. W., & Lee, J.-H. (2021). Pure and Pr-doped Ce4W9O33 with superior hydroxyl scavenging ability: Humidity-independent oxide chemiresistors. Journal of Materials Chemistry A, 9(30), 16359–16369. https://doi.org/10.1039/D1TA02618F
Kim, T.-H., Kim, K. B., & Lee, J.-H. (2019). Highly sensitive and selective trimethylamine sensor using yolk-shell structured Mo-doped Co3O4 spheres. Journal of Sensor Science and Technology, 28(5), 271–276. https://doi.org/10.5369/JSST.2019.28.5.271
Kutsanedzie, F. Y. H., Guo, Z., & Chen, Q. (2019). Advances in nondestructive methods for meat quality and safety monitoring. Food Reviews International, 35(6), 536–562. https://doi.org/10.1080/87559129.2019.1584814
Leghrib, R., Aantri, Y., Sanchez, J. B., Berger, F., & Kaaya, A. (2020). Assessing the freshness of Agadir blue fish using a metal oxide gas sensing array. Materials Today: Proceedings, 22, 1–5. https://doi.org/10.1016/j.matpr.2019.08.054
Li, H., Chu, S., Ma, Q., Fang, Y., Wang, J., Che, Q., Wang, G., & Yang, P. (2019). Novel construction of morphology-tunable C–N/SnO2/ZnO/Au microspheres with ultrasensitivity and high selectivity for triethylamine under various temperature detections. ACS Applied Materials & Interfaces, 11(8), 8601–8611. https://doi.org/10.1021/acsami.8b22357
Li, H.-Y., Lee, C.-S., Kim, D. H., & Lee, J.-H. (2018). Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Applied Materials & Interfaces, 10(33), 27858–27867. https://doi.org/10.1021/acsami.8b09169
Li, P., Geng, J., Li, H., & Niu, Z. (2020). Fish meal freshness detection by GBDT based on a portable electronic nose system and HS-SPME–GC–MS. European Food Research and Technology, 246(6), 1129–1140. https://doi.org/10.1007/s00217-020-03462-7
Li, P., Ren, Z., Shao, K., Tan, H., & Niu, Z. (2019). Research on distinguishing fish meal quality using different characteristic parameters based on electronic nose technology. Sensors, 19(9), 2146. https://doi.org/10.3390/s19092146
Li, Q., Zhang, L., & Luo, Y. (2018). Changes in microbial communities and quality attributes of white muscle and dark muscle from common carp (Cyprinus carpio) during chilled and freeze-chilled storage. Food Microbiology, 73, 237–244. https://doi.org/10.1016/j.fm.2018.01.011
Li, Y., Lu, Y.-L., Wu, K.-D., Zhang, D.-Z., Debliquy, M., & Zhang, C. (2021). Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Metals, 40(6), 1477–1493. https://doi.org/10.1007/s12598-020-01557-4
Li, Y., Liu, J., Zhang, J., Liang, X., Zhang, X., & Qi, Q. (2020). Deposition of In2O3 nanofibers on polyimide substrates to construct high-performance and flexible trimethylamine sensor. Chinese Chemical Letters, 31(8), 2142–2144. https://doi.org/10.1016/j.cclet.2019.11.048
Li, Y., Li, K., Luo, Y., Liu, B., Wang, H., Gao, L., & Duan, G. (2020). Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ZIF-67 and their gas-sensing performances for trimethylamine. Sensors and Actuators B: Chemical, 308, 127657. https://doi.org/10.1016/j.snb.2020.127657
Li, Z., Song, P., Yang, Z., & Wang, Q. (2018). In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceramics International, 44(3), 3364–3370. https://doi.org/10.1016/j.ceramint.2017.11.126
Liu, B., Li, K., Luo, Y., Gao, L., & Duan, G. (2021). Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chemical Engineering Journal, 420, 129881. https://doi.org/10.1016/j.cej.2021.129881
Liu, L., Fu, S., Lv, X., Yue, L., Fan, L., Yu, H., Gao, X., Zhu, W., Zhang, W., Li, X., & Zhu, W. (2020). A gas sensor with Fe2O3 nanospheres based on trimethylamine detection for the rapid assessment of spoilage degree in fish. Frontiers in Bioengineering and Biotechnology, 8, 567584. https://doi.org/10.3389/fbioe.2020.567584
Liu, M., Song, P., Zhong, X., Yang, Z., & Wang, Q. (2020). Facile synthesis of Au-decorated α-Fe2O3/rGO ternary hybrid structure nanocomposites for enhanced triethylamine gas-sensing properties. Journal of Materials Science: Materials in Electronics, 31(24), 22713–22726. https://doi.org/10.1007/s10854-020-04796-4
Liu, Y., Guo, R., Yuan, K., Gu, M., Lei, M., Yuan, C., Gao, M., Ai, Y., Liao, Y., Yang, X., Ren, Y., Zou, Y., & Deng, Y. (2022). Engineering pore walls of mesoporous tungsten oxides via Ce doping for the development of high-performance smart gas sensors. Chemistry of Materials, 34(5), 2321–2332. https://doi.org/10.1021/acs.chemmater.1c04216
Ma, Q., Chu, S., Li, H., Guo, J., Zhang, Q., & Lin, Z. (2021). Flower-like In2O3/ZnO heterostructure with accelerated multi-orientation electron transport mechanism for superior triethylamine detection. Applied Surface Science, 569, 151074. https://doi.org/10.1016/j.apsusc.2021.151074
Meng, D., Liu, D., Wang, G., Shen, Y., San, X., Si, J., & Meng, F. (2019). In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Applied Surface Science, 463, 348–356. https://doi.org/10.1016/j.apsusc.2018.08.228
Meng, D., Si, J., Wang, M., Wang, G., Shen, Y., San, X., & Meng, F. (2020). In-situ growth of V2O5 flower-like structures on ceramic tubes and their trimethylamine sensing properties. Chinese Chemical Letters, 31(8), 2133–2136. https://doi.org/10.1016/j.cclet.2019.12.021
Meng, F., Zheng, H., Sun, Y., Li, M., & Liu, J. (2017). Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors, 17(7), 1478. https://doi.org/10.3390/s17071478
Miao, J., Chen, C., & Lin, J. Y. S. (2020). Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sensors and Actuators B: Chemical, 309, 127785. https://doi.org/10.1016/j.snb.2020.127785
Mitsubayashi, K., Kubotera, Y., Yano, K., Hashimoto, Y., Kon, T., Nakakura, S., Nishi, Y., & Endo, H. (2004). Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish-freshness analysis. Sensors and Actuators B: Chemical, 103(1), 463–467. https://doi.org/10.1016/j.snb.2004.05.006
Miyasaki, T., Hamaguchi, M., & Yokoyama, S. (2011). Change of volatile compounds in fresh fish meat during ice storage. Journal of Food Science, 76(9), C1319–C1325. https://doi.org/10.1111/j.1750-3841.2011.02388.x
Nevigato, T., Masci, M., Casini, I., Caproni, R., & Orban, E. (2018). Trimethylamine as a freshness indicator for seafood stored in ice: Analysis by GC-FID of four species caught in the Tyrrhenian Sea. Italian Journal of Food Science, 30(3). https://doi.org/10.14674/IJFS-1092
Olafsdóttir, G., Martinsdóttir, E., Oehlenschläger, J., Dalgaard, P., Jensen, B., Undeland, I., Mackie, I. M., Henehan, G., Nielsen, J., & Nilsen, H. (1997). Methods to evaluate fish freshness in research and industry. Trends in Food Science & Technology, 8(8), 258–265. https://doi.org/10.1016/S0924-2244(97)01049-2
Olafsdottir, G., Nesvadba, P., Di Natale, C., Careche, M., Oehlenschläger, J., Tryggvadóttir, S. V., Schubring, R., Kroeger, M., Heia, K., Esaiassen, M., Macagnano, A., & Jørgensen, B. M. (2004). Multisensor for fish quality determination. Trends in Food Science & Technology, 15(2), 86–93. https://doi.org/10.1016/j.tifs.2003.08.006
Ólafsson, R., Martinsdottir, E., Ólafsdottir, G., Sigfusson, P. I., & Gardner, J. W. (1992). Monitoring of fish freshness using tin oxide sensors. In J. W. Gardner & P. N. Bartlett (Eds.), Sensors and sensory systems for an electronic nose (pp. 257–272). Springer Netherlands. https://doi.org/10.1007/978-94-015-7985-8_16
Pandeeswari, R., Sonia, T., Balamurugan, D., & Jeyaprakash, B. G. (2022). Highly selective dimethylamine vapour sensors based on spray deposited β-Bi2O3 nanospheres at low temperature. Sensing and Imaging, 23(1), 1. https://doi.org/10.1007/s11220-021-00371-1
Park, S. H., Kim, B.-Y., Jo, Y. K., Dai, Z., & Lee, J.-H. (2020). Chemiresistive trimethylamine sensor using monolayer SnO2 inverse opals decorated with Cr2O3 nanoclusters. Sensors and Actuators B: Chemical, 309, 127805. https://doi.org/10.1016/j.snb.2020.127805
Parlapani, F. F., Mallouchos, A., Haroutounian, S. A., & Boziaris, I. S. (2017). Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT - Food Science and Technology, 78, 54–62. https://doi.org/10.1016/j.lwt.2016.12.020
Pei, X., Hu, J., Song, H., Zhang, L., & Lv, Y. (2021). Ratiometric cataluminescence sensor of amine vapors for discriminating meat spoilage. Analytical Chemistry, 93(17), 6692–6697. https://doi.org/10.1021/acs.analchem.1c00034
Pereira, P. F. M., de Sousa Picciani, P. H., Calado, V., & Tonon, R. V. (2021). Electrical gas sensors for meat freshness assessment and quality monitoring: A review. Trends in Food Science & Technology, 118, 36–44. https://doi.org/10.1016/j.tifs.2021.08.036
Pons-Sánchez-Cascado, S., Vidal-Carou, M. C., Mariné-Font, A., & Veciana-Nogués, M. T. (2005). Influence of the freshness grade of raw fish on the formation of volatile and biogenic amines during the manufacture and storage of vinegar-marinated anchovies. Journal of Agricultural and Food Chemistry, 53(22), 8586–8592. https://doi.org/10.1021/jf050867m
Prabhakar, P. K., Vatsa, S., Srivastav, P. P., & Pathak, S. S. (2020). A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Research International, 133, 109157. https://doi.org/10.1016/j.foodres.2020.109157
Radi, R., Wahyudi, E., Adhityamurti, M. D., Putro, J. P. L. Y., Barokah, B., & Rohmah, D. N. (2021). Freshness assessment of tilapia fish in traditional market based on an electronic nose. Bulletin of Electrical Engineering and Informatics, 10(5), 2466–2476. https://doi.org/10.11591/eei.v10i5.3111
Alan R. P. and Robert C. B. (1982) Equatorial waves in steady zonal shear flow. Quarterly Journal of the Royal Meteorological Society, 108(456), 313–334, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49710845603.
Schweizer-Berberich, P.-M., Vaihinger, S., & Göpel, W. (1994). Characterisation of food freshness with sensor arrays. Sensors and Actuators B: Chemical, 18(1), 282–290. https://doi.org/10.1016/0925-4005(94)87095-0
Semeano, A. T. S., Maffei, D. F., Palma, S., Li, R. W. C., Franco, B. D. G. M., Roque, A. C. A., & Gruber, J. (2018). Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control, 89, 72–76. https://doi.org/10.1016/j.foodcont.2018.01.025
Senapati, M., & Sahu, P. P. (2020). Onsite fish quality monitoring using ultra-sensitive patch electrode capacitive sensor at room temperature. Biosensors and Bioelectronics, 168, 112570. https://doi.org/10.1016/j.bios.2020.112570
Shang, Y., Shi, R., Cui, Y., Che, Q., Wang, J., & Yang, P. (2020). Urchin-like WO2.72 microspheres decorated with Au and PdO nanoparticles for the selective detection of trimethylamine. ACS Applied Nano Materials, 3(6), 5554–5564. https://doi.org/10.1021/acsanm.0c00827
Shen, J., Xu, S., Zhao, C., Qiao, X., Liu, H., Zhao, Y., Wei, J., & Zhu, Y. (2021). Bimetallic Au@Pt nanocrystal sensitization mesoporous α-Fe2O3 hollow nanocubes for highly sensitive and rapid detection of fish freshness at low temperature. ACS Applied Materials & Interfaces, 13(48), 57597–57608. https://doi.org/10.1021/acsami.1c17695
Shen, Z., Zhang, X., Mi, R., Liu, M., Chen, Y., Chen, C., & Ruan, S. (2018). On the high response towards TEA of gas sensors based on Ag-loaded 3D porous ZnO microspheres. Sensors and Actuators B: Chemical, 270, 492–499. https://doi.org/10.1016/j.snb.2018.05.034
Shi, C., Yang, X., Han, S., Fan, B., Zhao, Z., Wu, X., & Qian, J. (2018). Nondestructive prediction of Tilapia fillet freshness during storage at different temperatures by integrating an electronic nose and tongue with radial basis function neural networks. Food and Bioprocess Technology, 11(10), 1840–1852. https://doi.org/10.1007/s11947-018-2148-8
Sovizi, M. R., & Mirzakhani, S. (2020). A chemiresistor sensor modified with lanthanum oxide nanoparticles as a highly sensitive and selective sensor for dimethylamine at room temperature. New Journal of Chemistry, 44(12), 4927–4934. https://doi.org/10.1039/C9NJ06329C
Srinivasan, P., & Rayappan, J. B. B. (2020). Investigations on room temperature dual sensitization of ZnO nanostructures towards fish quality biomarkers. Sensors and Actuators B: Chemical, 304, 127082. https://doi.org/10.1016/j.snb.2019.127082
Srinivasan, P., & Rayappan, J. B. B. (2021). Chemi-resistive sensing of methylamine species using twinned α-MoO3 nanorods: Role of grain features, activation energy and surface defects. Sensors and Actuators B: Chemical, 349, 130759. https://doi.org/10.1016/j.snb.2021.130759
Tang, X., & Yu, Z. (2020). Rapid evaluation of chicken meat freshness using gas sensor array and signal analysis considering total volatile basic nitrogen. International Journal of Food Properties, 23(1), 297–305. https://doi.org/10.1080/10942912.2020.1716797
Tonezzer, M. (2021a). Detection of Mackerel fish spoilage with a gas sensor based on one single SnO2 nanowire. Chemosensors, 9(1), 2. https://doi.org/10.3390/chemosensors9010002
Tonezzer, M. (2021b). Single nanowire gas sensor able to distinguish fish and meat and evaluate their degree of freshness. Chemosensors, 9(9), 249. https://doi.org/10.3390/chemosensors9090249
Tonezzer, M., Thai, N. X., Gasperi, F., Van Duy, N., & Biasioli, F. (2021). Quantitative assessment of Trout fish spoilage with a single nanowire gas sensor in a thermal gradient. Nanomaterials, 11(6), 1604. https://doi.org/10.3390/nano11061604
Vajdi, M., Varidi, M. J., Varidi, M., & Mohebbi, M. (2019). Using electronic nose to recognize fish spoilage with an optimum classifier. Journal of Food Measurement and Characterization, 13(2), 1205–1217. https://doi.org/10.1007/s11694-019-00036-4
Verma, P., & Yadava, R. D. S. (2015). Polymer selection for SAW sensor array based electronic noses by fuzzy c-means clustering of partition coefficients: Model studies on detection of freshness and spoilage of milk and fish. Sensors and Actuators B: Chemical, 209, 751–769. https://doi.org/10.1016/j.snb.2014.11.149
Waite, R., & Beveridge, M. (2014). Improving productivity and environmental performance of aquaculture. WorldFish. https://www.wri.org/research/improving-productivity-and-environmental-performance-aquaculture
Wang, G., Yang, S., Cao, L., Jin, P., Zeng, X., Zhang, X., & Wei, J. (2021). Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coordination Chemistry Reviews, 445, 214086. https://doi.org/10.1016/j.ccr.2021.214086
Wang, M., Gao, F., Wu, Q., Zhang, J., Xue, Y., Wan, H., & Wang, P. (2018). Real-time assessment of food freshness in refrigerators based on a miniaturized electronic nose. Analytical Methods, 10(39), 4741–4749. https://doi.org/10.1039/C8AY01242C
Wang, P., Zheng, Z., Cheng, X., Sui, L., Gao, S., & Zhang, X. (2017). Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness. Journal of Materials Chemistry A, 5(37), 19846–19856. https://doi.org/10.1039/C7TA06392J
Wang, W., Zhang, L., Liu, Z., Kang, Y., Chen, Q., & Wang, W. (2022). Visible-light-activated TiO2–NiFe2O4 heterojunction for detecting sub-ppm trimethylamine. Journal of Alloys and Compounds, 898, 162990. https://doi.org/10.1016/j.jallcom.2021.162990
Wang, X., Han, W., Yang, J., Cheng, P., Wang, Y., Feng, C., Wang, C., Zhang, H., Sun, Y., & Lu, G. (2022). Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles. Sensors and Actuators B: Chemical, 361, 131707. https://doi.org/10.1016/j.snb.2022.131707
Wang, X., Li, Y., Li, Z., Zhang, S., Deng, X., Zhao, G., & Xu, X. (2019). Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensors. Sensors and Actuators B: Chemical, 301, 127019. https://doi.org/10.1016/j.snb.2019.127019
Wang, Y., Zhang, S., Huang, C., Qu, F., Yao, D., Guo, H., Xu, H., Jiang, C., & Yang, M. (2021). Mesoporous WO3 modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton Transactions, 50(3), 970–978. https://doi.org/10.1039/D0DT03131C
Weichselbaum, E., Coe, S., Buttriss, J., & Stanner, S. (2013). Fish in the diet: A review. Nutrition Bulletin, 38(2), 128–177. https://doi.org/10.1111/nbu.12021
Wen, J., Song, Z., Ding, J., Wang, F., Li, H., Xu, J., & Zhang, C. (2022). MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature. Journal of Materials Science & Technology, 114, 233–239. https://doi.org/10.1016/j.jmst.2021.12.005
Wu, D., Zhang, M., Chen, H., & Bhandari, B. (2021). Freshness monitoring technology of fish products in intelligent packaging. Critical Reviews in Food Science and Nutrition, 61(8), 1279–1292. https://doi.org/10.1080/10408398.2020.1757615
Wu, K., Li, J., & Zhang, C. (2019). Zinc ferrite based gas sensors: A review. Ceramics International, 45(9), 11143–11157. https://doi.org/10.1016/j.ceramint.2019.03.086
Wu, K., Debliquy, M., & Zhang, C. (2022). Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chemical Engineering Journal, 444, 136449. https://doi.org/10.1016/j.cej.2022.136449
Wu, K., Zhang, W., Zheng, Z., Debliquy, M., & Zhang, C. (2022). Room-temperature gas sensors based on titanium dioxide quantum dots for highly sensitive and selective H2S detection. Applied Surface Science, 585, 152744. https://doi.org/10.1016/j.apsusc.2022.152744
Wu, K.-D., Xu, J.-Y., Debliquy, M., & Zhang, C. (2021). Synthesis and NH3/TMA sensing properties of CuFe2O4 hollow microspheres at low working temperature. Rare Metals, 40(7), 1768–1777. https://doi.org/10.1007/s12598-020-01609-9
Wu, L., Pu, H., & Sun, D.-W. (2019). Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends in Food Science & Technology, 83, 259–273. https://doi.org/10.1016/j.tifs.2018.12.002
Xiong, Y., Liu, W., Qiao, X., Song, X., Wang, S., & Zhang, X. (2021). Confined synthesis of 2D ultrathin ZnO/Co3O4 nanomeshes heterostructure for superior triethylamine detection at low temperature. Sensors and Actuators B: Chemical, 346, 130486. https://doi.org/10.1016/j.snb.2021.130486
Xu, H.-Y., Chen, Z.-R., Liu, C.-Y., Ye, Q., Yang, X.-P., Wang, J.-Q., & Cao, B.-Q. (2021). Preparation of {200} crystal faced SnO2 nanorods with extremely high gas sensitivity at lower temperature. Rare Metals, 40(8), 2004–2016. https://doi.org/10.1007/s12598-021-01720-5
Yan, W., Xu, H., Ling, M., Zhou, S., Qiu, T., Deng, Y., Zhao, Z., & Zhang, E. (2021). MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sensors, 6(7), 2613–2621. https://doi.org/10.1021/acssensors.1c00315
Yang, J., Han, W., Ma, J., Wang, C., Shimanoe, K., Zhang, S., Sun, Y., Cheng, P., Wang, Y., Zhang, H., & Lu, G. (2021). Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sensors and Actuators B: Chemical, 340, 129971. https://doi.org/10.1016/j.snb.2021.129971
Yang, M., Zhang, X., Guo, C., Cheng, X., Zhu, C., Xu, Y., Major, Z., & Huo, L. (2021). Resistive room temperature DMA gas sensor based on the forest-like unusual n-type PANI/TiO2 nanocomposites. Sensors and Actuators B: Chemical, 342, 130067. https://doi.org/10.1016/j.snb.2021.130067
Yang, M., Cheng, X., Zhang, X., Liu, W., Huang, C., Xu, Y., Gao, S., Zhao, H., & Huo, L. (2019). Preparation of highly crystalline NiO meshed nanowalls via ammonia volatilization liquid deposition for H2S detection. Journal of Colloid and Interface Science, 540, 39–50. https://doi.org/10.1016/j.jcis.2018.12.106
Yang, S., Liu, Y., Chen, W., Jin, W., Zhou, J., Zhang, H., & Zakharova, G. S. (2016). High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sensors and Actuators B: Chemical, 226, 478–485. https://doi.org/10.1016/j.snb.2015.12.005
Yang, T., Du, L., Zhai, C., Li, Z., Zhao, Q., Luo, Y., Xing, D.-S., & Zhang, M. (2017). Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures. Journal of Alloys and Compounds, 718, 396–404. https://doi.org/10.1016/j.jallcom.2017.05.227
Yang, T., Yang, X., Zhu, M., Zhao, H., & Zhang, M. (2020). Coral-like ZnFe2O4–ZnO mesoporous heterojunction architectures: Synthesis and enhanced sensing properties for triethylamine. Inorganic Chemistry Frontiers, 7(9), 1918–1926. https://doi.org/10.1039/D0QI00134A
Yang, W., Feng, L., He, S., Liu, L., & Liu, S. (2018). Density gradient strategy for preparation of broken In2O3 microtubes with remarkably selective detection of triethylamine vapor. ACS Applied Materials & Interfaces, 10(32), 27131–27140. https://doi.org/10.1021/acsami.8b09375
Yuan, H., Li, N., Fan, W., Cai, H., & Zhao, D. (2022). Metal-organic framework based gas sensors. Advanced Science, 9(6), 2104374. https://doi.org/10.1002/advs.202104374
Yuan, Z., Bariya, M., Fahad, H. M., Wu, J., Han, R., Gupta, N., & Javey, A. (2020). Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays. Advanced Materials, 32(21), 1908385. https://doi.org/10.1002/adma.201908385
Zambotti, G., Soprani, M., Gobbi, E., Capuano, R., Pasqualetti, V., Di Natale, C., & Ponzoni, A. (2019). Early detection of fish degradation by electronic nose. Presented at the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). https://doi.org/10.1109/ISOEN.2019.8823461
Zambotti, G., Soprani, M., Gobbi, E., Capuano, R., Pasqualetti, V., Di Natale, C., & Ponzoni, A. (2020). Portable electronic nose device for the identification of food degradation. In G. Di Francia, C. Di Natale, B. Alfano, S. De Vito, E. Esposito, G. Fattoruso, F. Formisano, E. Massera, M. L. Miglietta, & T. Polichetti (Eds.), Sensors and microsystems (pp. 91–95). Springer International Publishing. https://doi.org/10.1007/978-3-030-37558-4_14
Zaukuu, J. L. Z., Bazar, G., Gillay, Z., & Kovacs, Z. (2020). Emerging trends of advanced sensor based instruments for meat, poultry and fish quality – A review. Critical Reviews in Food Science and Nutrition, 60(20), 3443–3460. https://doi.org/10.1080/10408398.2019.1691972
Zhang, C., Huan, Y., Li, Y., Luo, Y., & Debliquy, M. (2022). Low concentration isopropanol gas sensing properties of Ag nanoparticles decorated In2O3 hollow spheres. Journal of Advanced Ceramics, 11(3), 379–391. https://doi.org/10.1007/s40145-021-0530-x
Zhang, C., Li, Y., Liu, G.-F., & Liao, H.-L. (2022). Preparation of ZnO1-x by peroxide thermal decomposition and its room temperature gas sensing properties. Rare Metals, 41(3), 871–876. https://doi.org/10.1007/s12598-021-01840-y
Zhang, C., Wu, K., Liao, H., & Debliquy, M. (2022). Room temperature WO3-Bi2WO6 sensors based on hierarchical microflowers for ppb-level H2S detection. Chemical Engineering Journal, 430, 132813. https://doi.org/10.1016/j.cej.2021.132813
Zhang, D., Yu, S., Wang, X., Huang, J., Pan, W., Zhang, J., Meteku, B. E., & Zeng, J. (2022). UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. Journal of Hazardous Materials, 423, 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
Zhang, F., Dong, X., Cheng, X., Xu, Y., Zhang, X., & Huo, L. (2019). Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres. ACS Applied Materials & Interfaces, 11(12), 11755–11762. https://doi.org/10.1021/acsami.8b22132
Zhang, F., Zheng, M., Zhang, X., Cheng, X., Li, M., Huo, L., Zhou, X., & Xu, Y. (2022). Rapid detection of H2S gas driven by the catalysis of flower-like α-Bi2Mo3O12 and its visual performance: A combined experimental and theoretical study. Journal of Hazardous Materials, 424, 127734. https://doi.org/10.1016/j.jhazmat.2021.127734
Zhang, S., Song, P., Tian, Z., & Wang, Q. (2018). Synthesis of mesoporous In2O3 nanocubes and their superior trimethylamine sensing properties. Materials Science in Semiconductor Processing, 75, 58–64. https://doi.org/10.1016/j.mssp.2017.11.029
Zhang, Z., Zhang, S., Jiang, C., Guo, H., Qu, F., Shimakawa, Y., & Yang, M. (2021). Integrated sensing array of the perovskite-type LnFeO3 (Ln = La, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 413, 125380. https://doi.org/10.1016/j.jhazmat.2021.125380
Zhao, C., Shen, J., Xu, S., Wei, J., Liu, H., Xie, S., Pan, Y., Zhao, Y., & Zhu, Y. (2022). Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chemistry, 392, 133318. https://doi.org/10.1016/j.foodchem.2022.133318
Zhao, Y., Yuan, X., Sun, Y., Wang, Q., Xia, X.-Y., & Tang, B. (2020). Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties. Sensors and Actuators B: Chemical, 323, 128663. https://doi.org/10.1016/j.snb.2020.128663
Zhou, L., Mi, Q., Jin, Y., Li, T., & Zhang, D. (2021). Construction of MoO3/MoSe2 nanocomposite-based gas sensor for low detection limit trimethylamine sensing at room temperature. Journal of Materials Science: Materials in Electronics, 32(13), 17301–17310. https://doi.org/10.1007/s10854-021-06242-5
Zhou, Q., Xu, L., Kan, Z., Yang, L., Chang, Z., Dong, B., Bai, X., Lu, G., & Song, H. (2022). A multi-platform sensor for selective and sensitive H2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles. Journal of Hazardous Materials, 426, 128075. https://doi.org/10.1016/j.jhazmat.2021.128075
Zhu, X., Chang, X., Tang, S., Chen, X., Gao, W., Niu, S., Li, J., Jiang, Y., & Sun, S. (2022). Humidity-tolerant chemiresistive gas sensors based on hydrophobic CeO2/SnO2 heterostructure films. ACS Applied Materials & Interfaces, 14(22), 25680–25692. https://doi.org/10.1021/acsami.2c03575
Zhuang, S., Hong, H., Zhang, L., & Luo, Y. (2021). Spoilage-related microbiota in fish and crustaceans during storage: Research progress and future trends. Comprehensive Reviews in Food Science and Food Safety, 20(1), 252–288. https://doi.org/10.1111/1541-4337.12659