Chenopodium quinoa Willd; Deep eutectic solvents; DES-Storage stabilization; Saponin green extraction; Chenopodium quinoa willd; Choline chloride; Deep eutectic solvent-storage stabilization; Green extractions; Greener solvents; Methanol-water; Simple++; Renewable Energy, Sustainability and the Environment; Building and Construction; Environmental Science (all); Strategy and Management; Industrial and Manufacturing Engineering; General Environmental Science
Abstract :
[en] In this work, a simple, fast (10 min) and environmentally friendly extraction method using deep eutectic solvents (DES), based on choline chloride and glycerol, was established to extract saponins from five quinoa samples: a) husks of bitter seeds, b) bitter seeds, c) water-washed bitter seeds, d) sweet seeds of the INIAP-Tunkahuan variety, and e) sweet seeds of the INIAP-Pata de Venado variety. The selected green solvent was a eutectic mixture of choline chloride - glycerol - water at a 1:2:1 M ratio. The extractions were performed in a ball mixer mill at room temperature (RT). A classical methanol - water (70:30, v/v) extraction was performed for comparison. In all quinoa samples, the characterization and relative quantification of saponins were achieved based on mass spectrometry analyses. Regardless of the type of solvent used (conventional or green solvents), hederagenin and phytolaccagenic acid were the major detected sapogenins in all tested quinoa samples. The husks of bitter seeds were the matrix with the highest saponin content. Although methanol - water (70:30, v/v) was shown to extract three times more saponins compared to DES, the green solvent offered a higher stabilization of quinoa saponin liquid extracts - up to 2 months - compared to conventional solvents (ethanol - methanol - water; 67:23:10, v/v/v). The present research shows that DES represent an efficient green media for the stabilization of bioactive saponins from quinoa and have a potential as possible alternatives to organic solvents. Our work opens new perspectives for the valorization of saponin-rich quinoa by-products (the husks of bitter seeds) as components for pharmaceutical, nutraceutical and agro-food applications.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères CISMA - Centre Interdisciplinaire de Spectrométrie de Masse
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Taco, Verónica; Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Quito, Ecuador ; Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, University of Mons (UMONS), Mons, Belgium
Savarino, Philippe ; Université de Mons - UMONS > Faculté des Sciences > Service de Synthèse et spectrométrie de masse organiques
M136 - Chimie thérapeutique et Pharmacognosie S816 - Matériaux Polymères et Composites S836 - Synthèse et spectrométrie de masse organiques
Research institute :
R550 - Institut des Sciences et Technologies de la Santé R100 - Institut des Biosciences R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
ARES CCD - Académie de Recherche et d'Enseignement Supérieur. Coopération au Développement
Funding text :
This work was supported by the Académie de Recherche et d'Enseignement Supérieur (ARES) in Belgium. V. Taco gratefully acknowledges the fellowship granted to her by ARES. The S2MOs laboratory acknowledges the “Fonds de la Recherche Scientifique (FRS-FNRS)” for its contribution to the acquisition of the Waters Synapt G2-Si mass spectrometer. P. Savarino thanks the Fund for Research Training in Industry and Agriculture (FRIA) for his PhD fellowship. S. Benali acknowledges supports by the European Community, Fonds Européen de Développement Régional (FEDER) for general support in the frame of LCFM-BIOMAT. J.M.R is Chercheur Qualifié from Belgian FNRS. We would like to thank the Maquita Cushunchic (MCCH) company in Ecuador for providing the quinoa seed samples for this study. We thank Raúl López, Diego Tafur, and Benjamín Martínez V. for their help and technical support.This work was supported by the Académie de Recherche et d'Enseignement Supérieur (ARES) in Belgium. V. Taco gratefully acknowledges the fellowship granted to her by ARES . The S 2 MOs laboratory acknowledges the “Fonds de la Recherche Scientifique (FRS-FNRS)” for its contribution to the acquisition of the Waters Synapt G2-Si mass spectrometer. P. Savarino thanks the Fund for Research Training in Industry and Agriculture ( FRIA ) for his PhD fellowship. S. Benali acknowledges supports by the European Community, Fonds Européen de Développement Régional (FEDER) for general support in the frame of LCFM-BIOMAT. J.M.R is Chercheur Qualifié from Belgian FNRS . We would like to thank the Maquita Cushunchic (MCCH) company in Ecuador for providing the quinoa seed samples for this study. We thank Raúl López, Diego Tafur, and Benjamín Martínez V. for their help and technical support.
Afshar Mogaddam, M.R., Farajzadeh, M.A., Tuzen, M., Jouyban, A., Khandaghi, J., Organic solvent-free elevated temperature liquid–liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid–liquid microextraction of three phenolic antioxidants from oil samples. Microchem. J., 168, 2021, 106433, 10.1016/j.microc.2021.106433.
Alam, M.A., Muhammad, G., Khan, M.N., Mofijur, M., Lv, Y., Xiong, W., Xu, J., Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod., 309, 2021, 127445, 10.1016/j.jclepro.2021.127445.
Aydin, F., Yilmaz, E., Soylak, M., A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J. 132 (2017), 280–285, 10.1016/j.microc.2017.02.014.
Aydin, F., Yilmaz, E., Soylak, M., Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 243 (2018), 442–447, 10.1016/j.foodchem.2017.09.154.
Barbieri, J.B., Goltz, C., Batistão Cavalheiro, F., Theodoro Toci, A., Igarashi-Mafra, L., Mafra, M.R., Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crop. Prod., 144, 2020, 112049, 10.1016/j.indcrop.2019.112049.
Bi, Y., Chi, X., Zhang, R., Lu, Y., Wang, Z., Dong, Q., Ding, C., Yang, R., Jiang, L., Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: insights of degradation kinetics and stability evaluation. Innovat. Food Sci. Emerg. Technol., 66, 2020, 102512, 10.1016/j.ifset.2020.102512.
Castro, V.I.B., Mano, F., Reis, R.L., Paiva, A., Duarte, A.R.C., Synthesis and physical and thermodynamic properties of lactic acid and malic acid-based natural deep eutectic solvents. J. Chem. Eng. Data 63 (2018), 2548–2556, 10.1021/acs.jced.7b01037.
Colson, E., Savarino, P., Claereboudt, J.S., E, Cabrera-Barjas, G., Deleu, M., Lins, L., Eeckhaut, I., Flammang, P., Gerbaux, P., Enhancing the membranolytic activity of Chenopodium quinoa saponins by fast microwave hydrolysis. Molecules, 25, 2020, 1731, 10.3390/molecules25071731.
Council of Europe, Foam index (2.8.24). European Pharmacopoeia 10 Ed., 2020, Council of Europe, Strasbourg.
Craveiro, R., Aroso, I., Flammia, V., Carvalho, T., Viciosa, M.T., Dionísio, M., Barreiros, S., Reis, R.L., Duarte, A.R.C., Paiva, A., Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq. 215 (2016), 534–540, 10.1016/j.molliq.2016.01.038.
Choi, Y.H., Verpoorte, R., Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 26 (2019), 87–93, 10.1016/j.cofs.2019.04.003.
Dahmoune, B., Houma-Bachari, F., Chibane, M., Akrour-Aissou, C., Guégan, J.-P., Vives, T., Jéhan, P., Dahmoune, F., Mouni, L., Ferrières, V., Hauchard, D., Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus: optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction. Chem. Eng. Process. Process. Intensif., 163, 2021, 108359, 10.1016/j.cep.2021.108359.
Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H., Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766 (2013), 61–68, 10.1016/j.aca.2012.12.019.
Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H., Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187 (2015), 14–19, 10.1016/j.foodchem.2015.03.123.
Dini, I., Schettino, O., Simioli, T., Dini, A., Studies of the constituents of Chenopodium quinoa seeds: isolation and characterization of new triterpene saponins. J. Agric. Food Chem. 49 (2001), 741–746, 10.1021/jf000971y.
Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., Xue, P., Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind. Crop. Prod., 149, 2020, 112350, 10.1016/j.indcrop.2020.112350.
Elik, A., Altunay, N., Chemometric approach for the spectrophotometric determination of chloramphenicol in various food matrices: using natural deep eutectic solvents. Spectrochim. Acta Mol. Biomol. Spectrosc., 276, 2022, 121198, 10.1016/j.saa.2022.121198.
Fiallos-Jurado, J., Pollier, J., Moses, T., Arendt, P., Barriga-Medina, N., Morillo, E., Arahana, V., de Lourdes Torres, M., Goossens, A., Leon-Reyes, A., Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Sci. 250 (2016), 188–197, 10.1016/j.plantsci.2016.05.015.
González, J.A., Elisa, S., Hussin, S., Prado, F.E., Quinoa: an Incan crop to face global changes in agriculture. Wiley-Blackwell, (eds.) Quinoa: Improvement and Sustainable Production, 2015, John Wiley & Sons, Inc., New Jersey, 1–18.
Góral, I., Stochmal, A., Wojciechowski, K., Surface activity of the oat, horse chestnut, cowherb, soybean, quinoa and soapwort extracts – is it only due to saponins?. Coll. Interf. Sci. Commun., 42, 2021, 100400, 10.1016/j.colcom.2021.100400.
Gullón, P., Gullón, B., Romaní, A., Rocchetti, G., Lorenzo, J.M., Smart advanced solvents for bioactive compounds recovery from agri-food by-products: a review. Trends Food Sci. Technol. 101 (2020), 182–197, 10.1016/j.tifs.2020.05.007.
Madl, T., Sterk, H., Mittelbach, M., Rechberger, G.N., Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J. Am. Soc. Mass Spectrom. 17 (2006), 795–806, 10.1016/j.jasms.2006.02.013.
Majinda, R.R., Extraction and isolation of saponins. Methods Mol. Biol. 864 (2012), 415–426, 10.1007/978-1-61779-624-1_16.
Marrelli, M., Conforti, F., Araniti, F., Statti, G.A., Effects of saponins on lipid metabolism: a review of potential health benefits in the treatment of obesity. Molecules, 21, 2016, 10.3390/molecules21101404.
Mastebroek, H.D., Limbutg, H., Gilles, T., Marvin, H.J., Occurrence of sapogenins in leaves and seeds quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 80 (2000), 152–156, 10.1002/(SICI)1097-0010(20000101)80:1<152::AID-JSFA503>3.0.CO;2-P.
Memon, Z.M., Yilmaz, E., Shah, A.M., Kazi, T.G., Devrajani, B.R., Soylak, M., A green ultrasonic-assisted liquid–liquid microextraction technique based on deep eutectic solvents for flame atomic absorption spectrometer determination of trace level of lead in tobacco and food samples. J. Iran. Chem. Soc. 16 (2018), 687–694, 10.1007/s13738-018-1547-0.
Mišan, A., Nađpal, J., Stupar, A., Pojić, M., Mandić, A., Verpoorte, R., Choi, Y.H., The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 60 (2019), 2564–2592, 10.1080/10408398.2019.1650717.
Morrison, H.G., Sun, C.C., Neervannan, S., Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 378 (2009), 136–139, 10.1016/j.ijpharm.2009.05.039.
Mukhopadhyay, S., Mukherjee, S., Hayyan, A., Hayyan, M., Hashim, M.A., Sen Gupta, B., Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin. J. Contam. Hydrol. 194 (2016), 17–23, 10.1016/j.jconhyd.2016.09.007.
Nemati, M., Altunay, N., Tuzen, M., Farajzadeh, M.A., Alizadeh Nabil, A.A., Lotfipour, F., Afshar Mogaddam, M.R., Air-assisted liquid-liquid microextraction of total 3-monochloropropane-1,2-diol from refined edible oils based on a natural deep eutectic solvent and its determination by gas chromatography-mass spectrometry. J. Chromatogr., A, 1656, 2021, 462559, 10.1016/j.chroma.2021.462559.
Nemati, M., Tuzen, M., Farazajdeh, M.A., Kaya, S., Afshar Mogaddam, M.R., Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal. Chim. Acta, 1199, 2022, 339570, 10.1016/j.aca.2022.339570.
Rahman, M.S., Raynie, D.E., Thermal behavior, solvatochromic parameters, and metal halide solvation of the novel water-based deep eutectic solvents. J. Mol. Liq., 2020, 10.1016/j.molliq.2020.114779 114779.
Savarino, P., Demeyer, M., Decroo, C., Colson, E., Gerbaux, P., Mass spectrometry analysis of saponins. Mass Spectrom. Rev., 2021, 10.1002/mas.21728.
Savi, L.K., Dias, M.C.G.C., Carpine, D., Waszczynskyj, N., Ribani, R.H., Haminiuk, C.W.I., Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology: a comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. Int. J. Food Sci. Technol. 54 (2018), 898–907, 10.1111/ijfs.14013.
Stuardo, M., San Martín, R., Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Ind. Crop. Prod. 27 (2008), 296–302, 10.1016/j.indcrop.2007.11.003.
Sun, A., Xu, X., Lin, J., Cui, X., Xu, R., Neuroprotection by saponins. Phytother Res.: PTR 29 (2015), 187–200, 10.1002/ptr.5246.
Tang, Y., He, X., Sun, J., Liu, G., Li, C., Li, L., Sheng, J., Zhou, Z., Xin, M., Ling, D., Yi, P., Zheng, F., Li, J., Li, Z., Yang, Y., Tang, J., Chen, X., Comprehensive evaluation on tailor-made deep eutectic solvents (DESs) in extracting tea saponins from seed pomace of Camellia oleifera Abel. Food Chem., 342, 2021, 128243, 10.1016/j.foodchem.2020.128243.
Yang, G.Y., Song, J.N., Chang, Y.Q., Wang, L., Zheng, Y.G., Zhang, D., Guo, L., Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma. Molecules 26, 2021 https://doi.org/10.3390/molecules26072079.
Yi, Y.S., New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J. Ethnopharmacol., 278, 2021, 114292, 10.1016/j.jep.2021.114292.