fire behavior; flame retardant; polymer materials; Reactive extrusion; reactive processing; structure-property relationships; Fire behaviour; Flame retardant polymers; Future perspectives; Materials design; Materials processing; Polymer materials; Present status; Reactive extrusions; Reactive processing; Structure-properties relationships; Electronic, Optical and Magnetic Materials; Chemistry (all); Renewable Energy, Sustainability and the Environment; Biomedical Engineering; Polymers and Plastics; Materials Chemistry; Electrical and Electronic Engineering; General Chemistry
Abstract :
[en] The development of flame retardant polymer materials has two roots, one in materials design, and the other in materials processing. Over recent decades, different types and classes of flame retardant polymer materials have been commercialized to meet safety requirements in the construction, automotive, and coatings industries. In the vast majority of cases, the design and fabrication of new materials presenting low fire hazards could be obtained through the incorporation of one, two or more flame retardants with similar or different natures into polymers. Nevertheless, the presence of these new phases, often used at high loading levels, usually impact the polymer’s other functional properties, such as mechanical, aging and transparency. These limitations could be partially or totally overcome using reactive extrusion, which is a promising process for developing new polymers or modifying the chemical structure of existing ones. Amongst other possibilities, reactive extrusion can be used for enhancing the fire behavior of existing polymers or for the synthesis of new ones presenting inherent flame retardant properties. In recent years, several new flame retardant polymers have been developed by reactive extrusion, but these developments have not been systematically described with regard to their technical circumstances, properties, and commercial potential. This short review attempts to overview and classify the available reports on the development of flame-retardant polymeric materials through reactive extrusion processes.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Materials science & engineering
Author, co-author :
Vahabi, Henri; Université de Lorraine, CentraleSupélec, LMOPS, Metz, France
Laoutid, Fouad ; Université de Mons - UMONS ; Laboratory of Polymeric & Composite Materials, Materia Nova Research Center, Mons, Belgium
Formela, Krzysztof; Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
Saeb, Mohammad Reza; Université de Lorraine, CentraleSupélec, LMOPS, Metz, France
Morgan, A. B.; Gilman, J. W. An Overview of Flame Retardancy of Polymeric Materials: application, Technology, and Future Directions. Fire Mater 2013, 37, 259–279. DOI: 10.1002/fam.2128.
Wilkie, C. A.; Morgan, A. B. Fire Retardancy of Polymeric Materials; Boca Raton, Florida: CRC Press, 2009.
Morgan, A. B.; Wilkie, C. A. The Non-Halogenated Flame Retardant Handbook; Salem, Massachusetts: John Wiley & Sons, 2014.
Subramanian, M. Basics of Polymers: fabrication and Processing Technology; New York: Momentum Press, 2015.
Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M. R.; Dubois, P. Flame Retardant Polymer Materials: An Update and the Future for 3D Printing Developments. Mater. Sci. Eng.: R: Rep. 2021, 144, 100604. DOI: 10.1016/j.mser.2020.100604.
Liang, S.; Neisius, N. M.; Gaan, S. Recent Developments in Flame Retardant Polymeric Coatings. Prog. Org. Coat. 2013, 76, 1642–1665. DOI: 10.1016/j.porgcoat.2013.07.014.
Wang, Q.; Chen, Y.; Liu, Y.; Yin, H.; Aelmans, N.; Kierkels, R. Performance of an Intumescent‐Flame‐Retardant Master Batch Synthesized by Twin‐Screw Reactive Extrusion: effect of the Polypropylene Carrier Resin. Polym. Int. 2004, 53, 439–448. DOI: 10.1002/pi.1394.
Mincheva, R.; Guemiza, H.; Hidan, C.; Moins, S.; Coulembier, O.; Dubois, P.; Laoutid, F. Development of Inherently Flame—Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion. Materials 2019, 13, 13. DOI: 10.3390/ma13010013.
Morgan, A. B. The Future of Flame Retardant Polymers–Unmet Needs and Likely New Approaches. Polym. Rev. 2019, 59, 25–54. DOI: 10.1080/15583724.2018.1454948.
Vahabi, H.; Sonnier, R.; Ferry, L. Effects of Ageing on the Fire Behaviour of Flame-Retarded Polymers: A Review. Polym. Int. 2015, 64, 313–328. DOI: 10.1002/pi.4841.
Vahabi, H.; Movahedifar, E.; Saeb, M. R. Flame Retardancy of Reactive and Functional Polymers. In Reactive and Functional Polymers Volume Three: Advanced Materials; Gutiérrez T. J., Ed.; Springer International Publishing: Cham, 2021; pp 165–195
Zhang, H.; Li, Z.; Gong, X.; Wang, Y. Synthesis of a New Flame Retardant Curing Agent with Phosphorus and Their Application to Epoxy Resins. J. Phys.: Conf. Ser. 2020, 1626, 012177. DOI: 10.1088/1742-6596/1626/1/012177.
Vahabi, H.; Rastin, H.; Movahedifar, E.; Antoun, K.; Brosse, N.; Saeb, M. R. Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers 2020, 12, 1234. DOI: 10.3390/polym12061234.
Nguyen, Q.-B.; Vahabi, H.; Rios de Anda, A.; Versace, D.-L.; Langlois, V.; Perrot, C.; Nguyen, V.-H.; Naili, S.; Renard, E. Dual UV-Thermal Curing of Biobased Resorcinol Epoxy Resin-Diatomite Composites with Improved Acoustic Performance and Attractive Flame Retardancy Behavior. Sustain. Chem. 2021, 2, 24–48. DOI: 10.3390/suschem2010003.
Rad, E. R.; Vahabi, H.; de Anda, A. R.; Saeb, M. R.; Thomas, S. Bio-Epoxy Resins with Inherent Flame Retardancy. Prog. Org. Coat. 2019, 135, 608–612. DOI: 10.1016/j.porgcoat.2019.05.046.
Beyer, G.; Hopmann, C. Reactive Extrusion: Principles and Applications: Hoboken, New Jersey: John Wiley & Sons, 2018.
Formela, K.; Zedler, Ł.; Hejna, A.; Tercjak, A. Reactive Extrusion of Bio-Based Polymer Blends and composites-Current Trends and Future Developments. Express Polym. Lett. 2018, 12, 24–57. DOI: 10.3144/expresspolymlett.2018.4.
Hyvärinen, M.; Jabeen, R.; Kärki, T. The Modelling of Extrusion Processes for Polymers—A Review. Polymers 2020, 12, 1306. DOI: 10.3390/polym12061306.
Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. DOI: 10.3390/ma11050840.
Ab Rahim, S.; Lajis, M.; Ariffin, S. A Review on Recycling Aluminum Chips by Hot Extrusion Process. Proc. CIRP 2015, 26, 761–766. DOI: 10.1016/j.procir.2015.01.013.
Pranzo, D.; Larizza, P.; Filippini, D.; Percoco, G. Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines 2018, 9, 374. DOI: 10.3390/mi9080374.
Offiah, V.; Kontogiorgos, V.; Falade, K. O. Extrusion Processing of Raw Food Materials and by-Products: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2979–2998. DOI: 10.1080/10408398.2018.1480007.
Lee, J.; Kim, K. E.; Bang, S.; Noh, I.; Lee, C. A Desktop Multi-Material 3D Bio-Printing System with Open-Source Hardware and Software. Int. J. Precis. Eng. Manuf. 2017, 18, 605–612. DOI: 10.1007/s12541-017-0072-x.
Hack, N.; Dressler, I.; Brohmann, L.; Gantner, S.; Lowke, D.; Kloft, H. Injection 3D Concrete Printing (I3DCP): Basic Principles and Case Studies. Materials 2020, 13, 1093. DOI: 10.3390/ma13051093.
Kim, N. P.; Eo, J.-S.; Cho, D. Optimization of Piston Type Extrusion (PTE) Techniques for 3D Printed Food. J. Food Eng. 2018, 235, 41–49. DOI: 10.1016/j.jfoodeng.2018.04.019.
Kim, J. H.; Hong, J. S.; Ishigami, A.; Kurose, T.; Ito, H.; Ahn, K. H. Effect of Melt-Compounding Protocol on Self-Aggregation and Percolation in a Ternary Composite. Polymers 2020, 12, 3041. DOI: 10.3390/polym12123041.
Clarkson, C. M.; Azrak, S. M. E. A.; Schueneman, G. T.; Snyder, J. F.; Youngblood, J. P. Crystallization Kinetics and Morphology of Small Concentrations of Cellulose Nanofibrils (CNFs) and Cellulose Nanocrystals (CNCs) Melt-Compounded into Poly (Lactic Acid)(PLA) with Plasticizer. Polymer 2020, 187, 122101. DOI: 10.1016/j.polymer.2019.122101.
Mysiukiewicz, O.; Barczewski, M. Crystallization of Polylactide-Based Green Composites Filled with Oil-Rich Waste Fillers. J. Polym. Res. 2020, 27, 1–17. DOI: 10.1007/s10965-020-02337-5.
Gomez, J.; Villaro, E.; Karagiannidis, P. G.; Elmarakbi, A. Effects of Chemical Structure and Morphology of Graphene-Related Materials (GRMs) on Melt Processing and Properties of GRM/Polyamide-6 Nanocomposites. Results Mater. 2020, 7, 100105. DOI: 10.1016/j.rinma.2020.100105.
Bauer, H.; Matić, J.; Khinast, J. Characteristic Parameters and Process Maps for Fully-Filled Twin-Screw Extruder Elements. Chem. Eng. Sci. 2021, 230, 116202. DOI: 10.1016/j.ces.2020.116202.
Chen, H.; Pandey, V.; Carson, S.; Maia, J. Enhanced Dispersive Mixing in Twin-Screw Extrusion via Extension-Dominated Static Mixing Elements of Varying Contraction Ratios. IPP 2020, 35, 37–49. DOI: 10.3139/217.3857.
Teixeira, P.; Covas, J.; Hilliou, L. In-Process Assessment of Clay Dispersion in PLA during Melt Compounding: Effects of Screw Speed and Filler Content. Polym. Degrad. Stab. 2020, 177, 109190. DOI: 10.1016/j.polymdegradstab.2020.109190.
Barczewski, M.; Barczewski, R.; Chwalczuk, T. The in-Line Detection Method of Sharkskin Melt Flow Instability during Polyethylene Extrusion Based on Pressure Analysis. J. Manuf. Processes 2020, 59, 153–166. DOI: 10.1016/j.jmapro.2020.09.046.
Mack, M. Compounding Options for Heat Sensitive Products. Adv. Polym. Technol. 1984, 4, 69–75. DOI: 10.1002/adv.1984.060040107.
Nan, J.; Baorui, Y.; Yingsheng, X. Three Screw Rod Extruder for Polymer. Chinese Patent CN.2471522.
Zhu, X.; Wang, G.; He, Y.; Cheng, Z. Study of Dynamic Flow and Mixing Performances of Tri-Screw Extruders with Finite Element Method. Adv. Mech. Eng. 2013, 5, 236389. DOI: 10.1155/2013/236389.
Wang, G.; Zhu, X.; He, Y.; Chen, L. Effects of Screw Clearance and Blend Ratio on the Flow and Mixing Characteristics of Tri-Screw Extruders in Cross Section with CFD. Eng. Appl. Comput. Fluid Mech. 2013, 7, 74–89. DOI: 10.1080/19942060.2013.11015455.
Zedler, Ł.; Kowalkowska-Zedler, D.; Vahabi, H.; Saeb, M. R.; Colom, X.; Cañavate, J.; Wang, S.; Formela, K. Preliminary Investigation on Auto-Thermal Extrusion of Ground Tire Rubber. Materials 2019, 12, 2090. DOI: 10.3390/ma12132090.
Andrzejewski, J.; Nowakowski, M. Development of Toughened Flax Fiber Reinforced Composites. Modification of Poly (Lactic Acid)/Poly (Butylene Adipate-co-Terephthalate) Blends by Reactive Extrusion Process. Materials 2021, 14, 1523. DOI: 10.3390/ma14061523.
Wollny, A.; Nitz, H.; Faulhammer, H.; Hoogen, N.; Mülhaupt, R. In Situ Formation and Compounding of Polyamide 12 by Reactive Extrusion. J. Appl. Polym. Sci. 2003, 90, 344–351. DOI: 10.1002/app.12577.
Verny, L.; Ylla, N.; Cruz-Boisson, F. D.; Espuche, E.; Mercier, R.; Sudre, G.; Bounor-Legaré, V. Solvent-Free Reactive Extrusion as an Innovative and Efficient Process for the Synthesis of Polyimides. Ind. Eng. Chem. Res. 2020, 59, 16191–16204. DOI: 10.1021/acs.iecr.0c02881.
Pierrot, F. X.; Ibarra-Gómez, R.; Bouquey, M.; Muller, R.; Serra, C. A. In Situ Polymerization of Styrene into a PMMA Matrix by Using an Extensional Flow Mixing Device: A New Experimental Approach to Elaborate Polymer Blends. Polymer 2017, 109, 160–169. DOI: 10.1016/j.polymer.2016.12.045.
Bettini, S. H. P.; Agnelli, J. A. M. Grafting of Maleic Anhydride onto Polypropylene by Reactive Extrusion. J. Appl. Polym. Sci. 2002, 85, 2706–2717. DOI: 10.1002/app.10705.
Hassouna, F.; Raquez, J.-M.; Addiego, F.; Toniazzo, V.; Dubois, P.; Ruch, D. New Development on Plasticized Poly(Lactide): Chemical Grafting of Citrate on PLA by Reactive Extrusion. Eur. Polym. J. 2012, 48, 404–415. DOI: 10.1016/j.eurpolymj.2011.12.001.
Bäuerle, T.; Ulitzsch, S.; Lorenz, A.; Rebner, K.; Chassé, T.; Kandelbauer, A.; Lorenz, G. Effects of Process Parameters on Silane Grafting of Liquid Ethylene-Propylene Copolymer by Reactive Extrusion as Quantified by Response Surface Methodology. Polymer 2020, 202, 122601. DOI: 10.1016/j.polymer.2020.122601.
Siyamak, S.; Laycock, B.; Luckman, P. Synthesis of Starch Graft-Copolymers via Reactive Extrusion: Process Development and Structural Analysis. Carbohydr. Polym. 2020, 227, 115066. DOI: 10.1016/j.carbpol.2019.115066.
Xue, B.; He, H.; Zhu, Z.; Li, J.; Huang, Z.; Wang, G.; Chen, M.; Zhan, Z. A Facile Fabrication of High Toughness Poly(Lactic Acid) via Reactive Extrusion with Poly(Butylene Succinate) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate. Polymers 2018, 10, 1401. DOI: 10.3390/polym10121401.
Rigoussen, A.; Raquez, J.-M.; Dubois, P.; Verge, P. A Dual Approach to Compatibilize PLA/ABS Immiscible Blends with Epoxidized Cardanol Derivatives. Eur. Polym. J. 2019, 114, 118–126. DOI: 10.1016/j.eurpolymj.2019.02.017.
Liao, J.; Brosse, N.; Hoppe, S.; Du, G.; Zhou, X.; Pizzi, A. One-Step Compatibilization of Poly(Lactic Acid) and Tannin via Reactive Extrusion. Mater. Des. 2020, 191, 108603. DOI: 10.1016/j.matdes.2020.108603.
Dhar, P.; Gaur, S. S.; Soundararajan, N.; Gupta, A.; Bhasney, S. M.; Milli, M.; Kumar, A.; Katiyar, V. Reactive Extrusion of Polylactic Acid/Cellulose Nanocrystal Films for Food Packaging Applications: Influence of Filler Type on Thermomechanical, Rheological, and Barrier Properties. Ind. Eng. Chem. Res. 2017, 56, 4718–4735. DOI: 10.1021/acs.iecr.6b04699.
Hejna, A.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Chmielnicki, B.; Korol, J.; Formela, K. Sustainable Upcycling of Brewers’ Spent Grain by Thermo-Mechanical Treatment in Twin-Screw Extruder. J. Cleaner Prod. 2021, 285, 124839. DOI: 10.1016/j.jclepro.2020.124839.
Hejna, A.; Marć, M.; Skórczewska, K.; Szulc, J.; Korol, J.; Formela, K. Insights into Modification of Lignocellulosic Fillers with Isophorone Diisocyanate: structure, Thermal Stability and Volatile Organic Compounds Emission Assessment. Eur. J. Wood Prod. 2021, 79, 75–90. DOI: 10.1007/s00107-020-01604-y.
Debiagi, F.; Faria-Tischer, P. C. S.; Mali, S. A Green Approach Based on Reactive Extrusion to Produce Nanofibrillated Cellulose from Oat Hull. Waste Biomass Valor. 2021, 12, 1051–1060. DOI: 10.1007/s12649-020-01025-1.
Wei, L.; McDonald, A. G.; Stark, N. M. Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via in Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules 2015, 16, 1040–1049. DOI: 10.1021/acs.biomac.5b00049.
Brown, E.; Abdelwahab, M.; Valerio, O.; Misra, M.; Mohanty, A. K. In Situ Cellulose Nanocrystal-Reinforced Glycerol-Based Biopolyester for Enhancing Poly(Lactic Acid) Biocomposites. ACS Omega 2018, 3, 3857–3867. DOI: 10.1021/acsomega.8b00056.
Vandenbossche, V.; Brault, J.; Vilarem, G.; Hernández-Meléndez, O.; Vivaldo-Lima, E.; Hernández-Luna, M.; Barzana, E.; Duque, A.; Manzanares, P.; Ballesteros, M.; et al. A New Lignocellulosic Biomass Deconstruction Process Combining Thermo-Mechano Chemical Action and Bio-Catalytic Enzymatic Hydrolysis in a Twin-Screw Extruder. Ind. Crops Prod. 2014, 55, 258–266. DOI: 10.1016/j.indcrop.2014.02.022.
Tellers, J.; Pinalli, R.; Soliman, M.; Vachon, J.; Dalcanale, E. Reprocessable Vinylogous Urethane Cross-Linked Polyethylene via Reactive Extrusion. Polym. Chem. 2019, 10, 5534–5542. DOI: 10.1039/C9PY01194C.
Sheppard, D. T.; Jin, K.; Hamachi, L. S.; Dean, W.; Fortman, D. J.; Ellison, C. J.; Dichtel, W. R. Reprocessing Postconsumer Polyurethane Foam Using Carbamate Exchange Catalysis and Twin-Screw Extrusion. ACS Cent. Sci. 2020, 6, 921–927. DOI: 10.1021/acscentsci.0c00083.
Asensio, M.; Nuñez, K.; Guerrero, J.; Herrero, M.; Merino, J. C.; Pastor, J. M. Rheological Modification of Recycled Poly(Ethylene Terephthalate): Blending and Reactive Extrusion. Polym. Degrad. Stab. 2020, 179, 109258. DOI: 10.1016/j.polymdegradstab.2020.109258.
Vahabi, H.; Movahedifar, E.; Saeb, M. Flame Retardancy of Reactive and Functional Polymers. In Reactive and Functional Polymers; New York City: Springer, 2021; pp. 165–195, Vol. 3.
Mohammadi, Y.; Khonakdar, H. A.; Jafari, S. H.; Saeb, M. R.; Golriz, M.; Wagenknecht, U.; Heinrich, G.; Sosnowski, S.; Szymanski, R. Simulation of Microstructural Eevolution during Reactive Blending of PET and PEN: Numerical Integration of Kinetic Differential Equations and Monte Carlo Method. Macromol. Theory Simul. 2015, 24, 152–167. DOI: 10.1002/mats.201400086.
Weil, E. D.; Patel, N. G.; Said, M.; Hirschler, M. M.; Shakir, S. Oxygen Index: correlations to Other Fire Tests. Fire Mater. 1992, 16, 159–167. DOI: 10.1002/fam.810160402.
Joseph, P.; Tretsiakova‐Mcnally, S. Reactive Modifications of Some Chain‐and Step‐Growth Polymers with Phosphorus‐Containing Compounds: effects on Flame Retardance—A Review. Polym. Adv. Technol. 2011, 22, 395–406. DOI: 10.1002/pat.1900.
Simonetti, P.; Nazir, R.; Gooneie, A.; Lehner, S.; Jovic, M.; Salmeia, K. A.; Hufenus, R.; Rippl, A.; Kaiser, J.-P.; Hirsch, C.; et al. Michael Addition in Reactive Extrusion: A Facile Sustainable Route to Developing Phosphorus Based Flame Retardant Materials. Compos. Part B: Eng. 2019, 178, 107470. DOI: 10.1016/j.compositesb.2019.107470.
Sahyoun, J.; Bounor-Legare, V.; Ferry, L.; Sonnier, R.; Bonhommé, A.; Cassagnau, P. Influence of Organophosphorous Silica Precursor on the Thermal and Fire Behaviour of a PA66/PA6 Copolymer. Polym. Degrad. Stab. 2015, 115, 117–128. DOI: 10.1016/j.polymdegradstab.2015.02.017.
Liu, Y.; Wang, Q. Reactive Extrusion to Synthesize Intumescent Flame Retardant with a Solid Acid as Catalyst and the Flame Retardancy of the Products in Polypropylene. J. Appl. Polym. Sci. 2008, 107, 14–20. DOI: 10.1002/app.26220.
Wang, D.-Y.; Liu, Y.; Wang, Y.-Z.; Artiles, C. P.; Hull, T. R.; Price, D. Fire Retardancy of a Reactively Extruded Intumescent Flame Retardant Polyethylene System Enhanced by Metal Chelates. Polym. Degrad. Stab. 2007, 92, 1592–1598. DOI: 10.1016/j.polymdegradstab.2007.04.015.
Wang, J.-S.; Wang, G.-H.; Liu, Y.; Jiao, Y.-H.; Liu, D. Thermal Stability, Combustion Behavior, and Toxic Gases in Fire Effluents of an Intumescent Flame-Retarded Polypropylene System. Ind. Eng. Chem. Res. 2014, 53, 6978–6984. DOI: 10.1021/ie500262w.
Chen, Y.; Wang, Q.; Yan, W.; Tang, H. Preparation of Flame Retardant Polyamide 6 Composite with Melamine Cyanurate Nanoparticles in Situ Formed in Extrusion Process. Polym. Degrad. Stab. 2006, 91, 2632–2643. DOI: 10.1016/j.polymdegradstab.2006.05.002.
Battegazzore, D.; Lavaselli, M.; Cheng, B.; Li, D.; Yang, R.; Frache, A.; Paul, G.; Marchese, L. Reactive Extrusion of Sol-Gel Silica as Fire Retardant Synergistic Additive in Ethylene-Vinyl Acetate Copolymer (EVA) Composites. Polym. Degrad. Stab. 2019, 167, 259–268. DOI: 10.1016/j.polymdegradstab.2019.07.011.
Verhoeven, V.; Padsalgikar, A.; Ganzeveld, K.; Janssen, L. The Reactive Extrusion of Thermoplastic Polyurethane and the Effect of the Depolymerization Reaction. Int. Polym. Proc. 2006, 21, 295–308.
Semsarzadeh, M.; Navarchian, A.; Morshedian, J. Reactive Extrusion of Poly (Urethane‐Isocyanurate). Adv. Polym. Technol. 2004, 23, 239–255. DOI: 10.1002/adv.20014.
Kim, H.; Oh, K.; Seo, Y. Rheological and Mechanical Properties of a Novel Polyamide 6 Synthesized by Anionic Polymerization of ε-Caprolactam in a Twin-Screw Extruder. Polymer 2019, 177, 196–201. DOI: 10.1016/j.polymer.2019.06.008.
Tuna, B.; Benkreira, H. Reactive Extrusion of Polyamide 6 Using a Novel Chain Extender. Polym. Eng. Sci. 2019, 59, E25–E31. DOI: 10.1002/pen.24944.
Bourbigot, S.; Fontaine, G.; Gallos, A.; Bellayer, S. Reactive Extrusion of PLA and of PLA/Carbon Nanotubes Nanocomposite: processing, Characterization and Flame Retardancy. Polym. Adv. Technol. 2011, 22, 30–37. DOI: 10.1002/pat.1715.
Misiura, D.; Majka, T. M. An Overview on Obtaining Foamed PET by Reactive Extrusion. Tech. Trans. 2018, 115, 97–102.
Gallos, A.; Fontaine, G.; Bourbigot, S. Reactive Extrusion of Intumescent Stereocomplexed Poly‐L, D‐Lactide: characterization and Reaction to Fire. Polym. Adv. Technol. 2013, 24, 130–133. DOI: 10.1002/pat.3058.
Pagel, S.; Benz, J.; Mourgas, G.; Buchmeiser, M.; Bonten, C. Reactive Compounding of Intrinsically Flame-Resistant Polyamides. AIP Conference Proceedings: AIP Publishing LLC, 2020; p. 020043.doi: 10.1063/5.0028391
Sahyoun, J.; Bounor-Legaré, V.; Ferry, L.; Sonnier, R.; Da Cruz-Boisson, F.; Melis, F.; Bonhommé, A.; Cassagnau, P. Synthesis of a New Organophosphorous Alkoxysilane Precursor and Its Effect on the Thermal and Fire Behavior of a PA66/PA6 Copolymer. Eur. Polym. J. 2015, 66, 352–366. DOI: 10.1016/j.eurpolymj.2015.02.036.
Chen, Y.; Liu, Y.; Wang, Q.; Yin, H.; Aelmans, N.; Kierkels, R. Performance of Intumescent Flame Retardant Master Batch Synthesized through Twin-Screw Reactively Extruding Technology: effect of Component Ratio. Polym. Degrad. Stab. 2003, 81, 215–224. DOI: 10.1016/S0141-3910(03)00091-0.
Liu, Y.; Wang, Q.; Chen, Y. Preparation and Application of Deformable and Orientable Intumescent Flame Retardants Incorporated with Polypropylene. Polym.-Plast. Technol. Eng. 2007, 46, 455–460. DOI: 10.1080/03602550701247413.
Bethke, C.; Goedderz, D.; Weber, L.; Standau, T.; Döring, M.; Altstädt, V. Improving the Flame‐Retardant Property of Bottle‐Grade PET Foam Made by Reactive Foam Extrusion. J. Appl. Polym. Sci. 2020, 137, 49042. DOI: 10.1002/app.49042.